![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lvolbase | Structured version Visualization version GIF version |
Description: A 3-dim lattice volume is a lattice element. (Contributed by NM, 1-Jul-2012.) |
Ref | Expression |
---|---|
lvolbase.b | ⊢ 𝐵 = (Base‘𝐾) |
lvolbase.v | ⊢ 𝑉 = (LVols‘𝐾) |
Ref | Expression |
---|---|
lvolbase | ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4063 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ¬ 𝑉 = ∅) | |
2 | lvolbase.v | . . . . 5 ⊢ 𝑉 = (LVols‘𝐾) | |
3 | 2 | eqeq1i 2765 | . . . 4 ⊢ (𝑉 = ∅ ↔ (LVols‘𝐾) = ∅) |
4 | 1, 3 | sylnib 317 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ¬ (LVols‘𝐾) = ∅) |
5 | fvprc 6347 | . . 3 ⊢ (¬ 𝐾 ∈ V → (LVols‘𝐾) = ∅) | |
6 | 4, 5 | nsyl2 142 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝐾 ∈ V) |
7 | lvolbase.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
8 | eqid 2760 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
9 | eqid 2760 | . . . 4 ⊢ (LPlanes‘𝐾) = (LPlanes‘𝐾) | |
10 | 7, 8, 9, 2 | islvol 35380 | . . 3 ⊢ (𝐾 ∈ V → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ (LPlanes‘𝐾)𝑥( ⋖ ‘𝐾)𝑋))) |
11 | 10 | simprbda 654 | . 2 ⊢ ((𝐾 ∈ V ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝐵) |
12 | 6, 11 | mpancom 706 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 Vcvv 3340 ∅c0 4058 class class class wbr 4804 ‘cfv 6049 Basecbs 16079 ⋖ ccvr 35070 LPlanesclpl 35299 LVolsclvol 35300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fv 6057 df-lvols 35307 |
This theorem is referenced by: islvol2 35387 lvolnle3at 35389 lvolneatN 35395 lvolnelln 35396 lvolnelpln 35397 lplncvrlvol2 35422 lvolcmp 35424 2lplnja 35426 |
Copyright terms: Public domain | W3C validator |