Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lzunuz Structured version   Visualization version   GIF version

Theorem lzunuz 39372
Description: The union of a lower set of integers and an upper set of integers which abut or overlap is all of the integers. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
lzunuz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) = ℤ)

Proof of Theorem lzunuz
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elun 4127 . . 3 (𝑎 ∈ ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) ↔ (𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ∨ 𝑎 ∈ (ℤ𝐵)))
2 ellz1 39371 . . . . . 6 (𝐴 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝐴)))
323ad2ant1 1129 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝐴)))
4 eluz1 12250 . . . . . 6 (𝐵 ∈ ℤ → (𝑎 ∈ (ℤ𝐵) ↔ (𝑎 ∈ ℤ ∧ 𝐵𝑎)))
543ad2ant2 1130 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ (ℤ𝐵) ↔ (𝑎 ∈ ℤ ∧ 𝐵𝑎)))
63, 5orbi12d 915 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ∨ 𝑎 ∈ (ℤ𝐵)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝐴) ∨ (𝑎 ∈ ℤ ∧ 𝐵𝑎))))
7 zre 11988 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
87adantl 484 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℝ)
9 simpl1 1187 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → 𝐴 ∈ ℤ)
109zred 12090 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → 𝐴 ∈ ℝ)
11 lelttric 10749 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑎𝐴𝐴 < 𝑎))
128, 10, 11syl2anc 586 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝑎𝐴𝐴 < 𝑎))
13 simpll2 1209 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵 ∈ ℤ)
1413zred 12090 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵 ∈ ℝ)
15 simpll1 1208 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐴 ∈ ℤ)
1615peano2zd 12093 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → (𝐴 + 1) ∈ ℤ)
1716zred 12090 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → (𝐴 + 1) ∈ ℝ)
187ad2antlr 725 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝑎 ∈ ℝ)
19 simpll3 1210 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵 ≤ (𝐴 + 1))
20 zltp1le 12035 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (𝐴 < 𝑎 ↔ (𝐴 + 1) ≤ 𝑎))
21203ad2antl1 1181 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝐴 < 𝑎 ↔ (𝐴 + 1) ≤ 𝑎))
2221biimpa 479 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → (𝐴 + 1) ≤ 𝑎)
2314, 17, 18, 19, 22letrd 10799 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵𝑎)
2423ex 415 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝐴 < 𝑎𝐵𝑎))
2524orim2d 963 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → ((𝑎𝐴𝐴 < 𝑎) → (𝑎𝐴𝐵𝑎)))
2612, 25mpd 15 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝑎𝐴𝐵𝑎))
2726ex 415 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ ℤ → (𝑎𝐴𝐵𝑎)))
2827pm4.71d 564 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℤ ∧ (𝑎𝐴𝐵𝑎))))
29 andi 1004 . . . . 5 ((𝑎 ∈ ℤ ∧ (𝑎𝐴𝐵𝑎)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝐴) ∨ (𝑎 ∈ ℤ ∧ 𝐵𝑎)))
3028, 29syl6rbb 290 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (((𝑎 ∈ ℤ ∧ 𝑎𝐴) ∨ (𝑎 ∈ ℤ ∧ 𝐵𝑎)) ↔ 𝑎 ∈ ℤ))
316, 30bitrd 281 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ∨ 𝑎 ∈ (ℤ𝐵)) ↔ 𝑎 ∈ ℤ))
321, 31syl5bb 285 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) ↔ 𝑎 ∈ ℤ))
3332eqrdv 2821 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) = ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  cdif 3935  cun 3936   class class class wbr 5068  cfv 6357  (class class class)co 7158  cr 10538  1c1 10540   + caddc 10542   < clt 10677  cle 10678  cz 11984  cuz 12246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247
This theorem is referenced by:  diophin  39376
  Copyright terms: Public domain W3C validator