MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1exp1 Structured version   Visualization version   GIF version

Theorem m1exp1 15012
Description: Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.)
Assertion
Ref Expression
m1exp1 (𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))

Proof of Theorem m1exp1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2z 11354 . . . . . 6 2 ∈ ℤ
2 divides 14904 . . . . . 6 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁))
31, 2mpan 705 . . . . 5 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁))
4 oveq2 6613 . . . . . . . 8 (𝑁 = (𝑛 · 2) → (-1↑𝑁) = (-1↑(𝑛 · 2)))
54eqcoms 2634 . . . . . . 7 ((𝑛 · 2) = 𝑁 → (-1↑𝑁) = (-1↑(𝑛 · 2)))
6 zcn 11327 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
7 2cnd 11038 . . . . . . . . . 10 (𝑛 ∈ ℤ → 2 ∈ ℂ)
86, 7mulcomd 10006 . . . . . . . . 9 (𝑛 ∈ ℤ → (𝑛 · 2) = (2 · 𝑛))
98oveq2d 6621 . . . . . . . 8 (𝑛 ∈ ℤ → (-1↑(𝑛 · 2)) = (-1↑(2 · 𝑛)))
10 m1expeven 12844 . . . . . . . 8 (𝑛 ∈ ℤ → (-1↑(2 · 𝑛)) = 1)
119, 10eqtrd 2660 . . . . . . 7 (𝑛 ∈ ℤ → (-1↑(𝑛 · 2)) = 1)
125, 11sylan9eqr 2682 . . . . . 6 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝑁) → (-1↑𝑁) = 1)
1312rexlimiva 3026 . . . . 5 (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁 → (-1↑𝑁) = 1)
143, 13syl6bi 243 . . . 4 (𝑁 ∈ ℤ → (2 ∥ 𝑁 → (-1↑𝑁) = 1))
1514impcom 446 . . 3 ((2 ∥ 𝑁𝑁 ∈ ℤ) → (-1↑𝑁) = 1)
16 simpl 473 . . 3 ((2 ∥ 𝑁𝑁 ∈ ℤ) → 2 ∥ 𝑁)
1715, 162thd 255 . 2 ((2 ∥ 𝑁𝑁 ∈ ℤ) → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
18 ax-1ne0 9950 . . . . 5 1 ≠ 0
19 eqcom 2633 . . . . . 6 (-1 = 1 ↔ 1 = -1)
20 ax-1cn 9939 . . . . . . 7 1 ∈ ℂ
2120eqnegi 10699 . . . . . 6 (1 = -1 ↔ 1 = 0)
2219, 21bitri 264 . . . . 5 (-1 = 1 ↔ 1 = 0)
2318, 22nemtbir 2891 . . . 4 ¬ -1 = 1
24 odd2np1 14984 . . . . . . 7 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
25 oveq2 6613 . . . . . . . . . 10 (𝑁 = ((2 · 𝑛) + 1) → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1)))
2625eqcoms 2634 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1)))
27 neg1cn 11069 . . . . . . . . . . . 12 -1 ∈ ℂ
2827a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℤ → -1 ∈ ℂ)
29 neg1ne0 11071 . . . . . . . . . . . 12 -1 ≠ 0
3029a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℤ → -1 ≠ 0)
311a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 2 ∈ ℤ)
32 id 22 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
3331, 32zmulcld 11432 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
3428, 30, 33expp1zd 12954 . . . . . . . . . 10 (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = ((-1↑(2 · 𝑛)) · -1))
3510oveq1d 6620 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = (1 · -1))
3627mulid2i 9988 . . . . . . . . . . 11 (1 · -1) = -1
3735, 36syl6eq 2676 . . . . . . . . . 10 (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = -1)
3834, 37eqtrd 2660 . . . . . . . . 9 (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = -1)
3926, 38sylan9eqr 2682 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝑁) → (-1↑𝑁) = -1)
4039rexlimiva 3026 . . . . . . 7 (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1)
4124, 40syl6bi 243 . . . . . 6 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (-1↑𝑁) = -1))
4241impcom 446 . . . . 5 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → (-1↑𝑁) = -1)
4342eqeq1d 2628 . . . 4 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ((-1↑𝑁) = 1 ↔ -1 = 1))
4423, 43mtbiri 317 . . 3 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ¬ (-1↑𝑁) = 1)
45 simpl 473 . . 3 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ¬ 2 ∥ 𝑁)
4644, 452falsed 366 . 2 ((¬ 2 ∥ 𝑁𝑁 ∈ ℤ) → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
4717, 46pm2.61ian 830 1 (𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wne 2796  wrex 2913   class class class wbr 4618  (class class class)co 6605  cc 9879  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886  -cneg 10212  2c2 11015  cz 11322  cexp 12797  cdvds 14902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-n0 11238  df-z 11323  df-uz 11632  df-seq 12739  df-exp 12798  df-dvds 14903
This theorem is referenced by:  2lgs  25027  2lgsoddprm  25036
  Copyright terms: Public domain W3C validator