MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1expaddsub Structured version   Visualization version   GIF version

Theorem m1expaddsub 17834
Description: Addition and subtraction of parities are the same. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
m1expaddsub ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋𝑌)) = (-1↑(𝑋 + 𝑌)))

Proof of Theorem m1expaddsub
StepHypRef Expression
1 m1expcl 12820 . . . . . 6 (𝑋 ∈ ℤ → (-1↑𝑋) ∈ ℤ)
21zcnd 11427 . . . . 5 (𝑋 ∈ ℤ → (-1↑𝑋) ∈ ℂ)
32adantr 481 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑋) ∈ ℂ)
4 m1expcl 12820 . . . . . 6 (𝑌 ∈ ℤ → (-1↑𝑌) ∈ ℤ)
54zcnd 11427 . . . . 5 (𝑌 ∈ ℤ → (-1↑𝑌) ∈ ℂ)
65adantl 482 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ∈ ℂ)
7 neg1cn 11069 . . . . . 6 -1 ∈ ℂ
8 neg1ne0 11071 . . . . . 6 -1 ≠ 0
9 expne0i 12829 . . . . . 6 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ≠ 0)
107, 8, 9mp3an12 1411 . . . . 5 (𝑌 ∈ ℤ → (-1↑𝑌) ≠ 0)
1110adantl 482 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑𝑌) ≠ 0)
123, 6, 11divrecd 10749 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) / (-1↑𝑌)) = ((-1↑𝑋) · (1 / (-1↑𝑌))))
13 m1expcl2 12819 . . . . . 6 (𝑌 ∈ ℤ → (-1↑𝑌) ∈ {-1, 1})
14 elpri 4173 . . . . . 6 ((-1↑𝑌) ∈ {-1, 1} → ((-1↑𝑌) = -1 ∨ (-1↑𝑌) = 1))
15 ax-1cn 9939 . . . . . . . . . 10 1 ∈ ℂ
16 ax-1ne0 9950 . . . . . . . . . 10 1 ≠ 0
17 divneg2 10694 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
1815, 15, 16, 17mp3an 1421 . . . . . . . . 9 -(1 / 1) = (1 / -1)
19 1div1e1 10662 . . . . . . . . . 10 (1 / 1) = 1
2019negeqi 10219 . . . . . . . . 9 -(1 / 1) = -1
2118, 20eqtr3i 2650 . . . . . . . 8 (1 / -1) = -1
22 oveq2 6613 . . . . . . . 8 ((-1↑𝑌) = -1 → (1 / (-1↑𝑌)) = (1 / -1))
23 id 22 . . . . . . . 8 ((-1↑𝑌) = -1 → (-1↑𝑌) = -1)
2421, 22, 233eqtr4a 2686 . . . . . . 7 ((-1↑𝑌) = -1 → (1 / (-1↑𝑌)) = (-1↑𝑌))
25 oveq2 6613 . . . . . . . 8 ((-1↑𝑌) = 1 → (1 / (-1↑𝑌)) = (1 / 1))
26 id 22 . . . . . . . 8 ((-1↑𝑌) = 1 → (-1↑𝑌) = 1)
2719, 25, 263eqtr4a 2686 . . . . . . 7 ((-1↑𝑌) = 1 → (1 / (-1↑𝑌)) = (-1↑𝑌))
2824, 27jaoi 394 . . . . . 6 (((-1↑𝑌) = -1 ∨ (-1↑𝑌) = 1) → (1 / (-1↑𝑌)) = (-1↑𝑌))
2913, 14, 283syl 18 . . . . 5 (𝑌 ∈ ℤ → (1 / (-1↑𝑌)) = (-1↑𝑌))
3029adantl 482 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (1 / (-1↑𝑌)) = (-1↑𝑌))
3130oveq2d 6621 . . 3 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) · (1 / (-1↑𝑌))) = ((-1↑𝑋) · (-1↑𝑌)))
3212, 31eqtrd 2660 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((-1↑𝑋) / (-1↑𝑌)) = ((-1↑𝑋) · (-1↑𝑌)))
33 expsub 12845 . . 3 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (-1↑(𝑋𝑌)) = ((-1↑𝑋) / (-1↑𝑌)))
347, 8, 33mpanl12 717 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋𝑌)) = ((-1↑𝑋) / (-1↑𝑌)))
35 expaddz 12841 . . 3 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (-1↑(𝑋 + 𝑌)) = ((-1↑𝑋) · (-1↑𝑌)))
367, 8, 35mpanl12 717 . 2 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋 + 𝑌)) = ((-1↑𝑋) · (-1↑𝑌)))
3732, 34, 363eqtr4d 2670 1 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (-1↑(𝑋𝑌)) = (-1↑(𝑋 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1480  wcel 1992  wne 2796  {cpr 4155  (class class class)co 6605  cc 9879  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886  cmin 10211  -cneg 10212   / cdiv 10629  cz 11322  cexp 12797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-seq 12739  df-exp 12798
This theorem is referenced by:  psgnuni  17835  41prothprmlem2  40822
  Copyright terms: Public domain W3C validator