MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1lgs Structured version   Visualization version   GIF version

Theorem m1lgs 25892
Description: The first supplement to the law of quadratic reciprocity. Negative one is a square mod an odd prime 𝑃 iff 𝑃≡1 (mod 4). See first case of theorem 9.4 in [ApostolNT] p. 181. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
m1lgs (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))

Proof of Theorem m1lgs
StepHypRef Expression
1 neg1z 12007 . . . . . . . . 9 -1 ∈ ℤ
2 oddprm 16137 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
32nnnn0d 11944 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ0)
4 zexpcl 13434 . . . . . . . . 9 ((-1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (-1↑((𝑃 − 1) / 2)) ∈ ℤ)
51, 3, 4sylancr 587 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (-1↑((𝑃 − 1) / 2)) ∈ ℤ)
65peano2zd 12079 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → ((-1↑((𝑃 − 1) / 2)) + 1) ∈ ℤ)
7 eldifi 4102 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
8 prmnn 16008 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
97, 8syl 17 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
106, 9zmodcld 13250 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℕ0)
1110nn0cnd 11946 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℂ)
12 1cnd 10625 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 1 ∈ ℂ)
1311, 12, 12subaddd 11004 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = 1 ↔ (1 + 1) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
14 2re 11700 . . . . . . . 8 2 ∈ ℝ
1514a1i 11 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 2 ∈ ℝ)
169nnrpd 12419 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ+)
17 0le2 11728 . . . . . . . 8 0 ≤ 2
1817a1i 11 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 0 ≤ 2)
19 oddprmgt2 16033 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 2 < 𝑃)
20 modid 13254 . . . . . . 7 (((2 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 𝑃)) → (2 mod 𝑃) = 2)
2115, 16, 18, 19, 20syl22anc 834 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (2 mod 𝑃) = 2)
22 df-2 11689 . . . . . 6 2 = (1 + 1)
2321, 22syl6eq 2872 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (2 mod 𝑃) = (1 + 1))
2423eqeq1d 2823 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ (1 + 1) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
25 eldifsni 4716 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
2625neneqd 3021 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → ¬ 𝑃 = 2)
27 prmuz2 16030 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
287, 27syl 17 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
29 2prm 16026 . . . . . . . . . . . 12 2 ∈ ℙ
30 dvdsprm 16037 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 2 ∈ ℙ) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
3128, 29, 30sylancl 586 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
3226, 31mtbird 326 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ¬ 𝑃 ∥ 2)
3332adantr 481 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ¬ 𝑃 ∥ 2)
34 1cnd 10625 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → 1 ∈ ℂ)
352adantr 481 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((𝑃 − 1) / 2) ∈ ℕ)
36 simpr 485 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ¬ 2 ∥ ((𝑃 − 1) / 2))
37 oexpneg 15684 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (-1↑((𝑃 − 1) / 2)) = -(1↑((𝑃 − 1) / 2)))
3834, 35, 36, 37syl3anc 1363 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (-1↑((𝑃 − 1) / 2)) = -(1↑((𝑃 − 1) / 2)))
3935nnzd 12075 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((𝑃 − 1) / 2) ∈ ℤ)
40 1exp 13448 . . . . . . . . . . . . . . . . 17 (((𝑃 − 1) / 2) ∈ ℤ → (1↑((𝑃 − 1) / 2)) = 1)
4139, 40syl 17 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (1↑((𝑃 − 1) / 2)) = 1)
4241negeqd 10869 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → -(1↑((𝑃 − 1) / 2)) = -1)
4338, 42eqtrd 2856 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (-1↑((𝑃 − 1) / 2)) = -1)
4443oveq1d 7160 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((-1↑((𝑃 − 1) / 2)) + 1) = (-1 + 1))
45 ax-1cn 10584 . . . . . . . . . . . . . 14 1 ∈ ℂ
46 neg1cn 11740 . . . . . . . . . . . . . 14 -1 ∈ ℂ
47 1pneg1e0 11745 . . . . . . . . . . . . . 14 (1 + -1) = 0
4845, 46, 47addcomli 10821 . . . . . . . . . . . . 13 (-1 + 1) = 0
4944, 48syl6eq 2872 . . . . . . . . . . . 12 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((-1↑((𝑃 − 1) / 2)) + 1) = 0)
5049oveq2d 7161 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) = (2 − 0))
51 2cn 11701 . . . . . . . . . . . 12 2 ∈ ℂ
5251subid1i 10947 . . . . . . . . . . 11 (2 − 0) = 2
5350, 52syl6eq 2872 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) = 2)
5453breq2d 5070 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) ↔ 𝑃 ∥ 2))
5533, 54mtbird 326 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ¬ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1)))
5655ex 413 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (¬ 2 ∥ ((𝑃 − 1) / 2) → ¬ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1))))
5756con4d 115 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) → 2 ∥ ((𝑃 − 1) / 2)))
58 2z 12003 . . . . . . . 8 2 ∈ ℤ
5958a1i 11 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 2 ∈ ℤ)
60 moddvds 15608 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ ((-1↑((𝑃 − 1) / 2)) + 1) ∈ ℤ) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1))))
619, 59, 6, 60syl3anc 1363 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1))))
62 4z 12005 . . . . . . . . 9 4 ∈ ℤ
63 4ne0 11734 . . . . . . . . 9 4 ≠ 0
64 nnm1nn0 11927 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
659, 64syl 17 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 − 1) ∈ ℕ0)
6665nn0zd 12074 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 − 1) ∈ ℤ)
67 dvdsval2 15600 . . . . . . . . 9 ((4 ∈ ℤ ∧ 4 ≠ 0 ∧ (𝑃 − 1) ∈ ℤ) → (4 ∥ (𝑃 − 1) ↔ ((𝑃 − 1) / 4) ∈ ℤ))
6862, 63, 66, 67mp3an12i 1456 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) ↔ ((𝑃 − 1) / 4) ∈ ℤ))
6965nn0cnd 11946 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 − 1) ∈ ℂ)
7051a1i 11 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 2 ∈ ℂ)
71 2ne0 11730 . . . . . . . . . . . 12 2 ≠ 0
7271a1i 11 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 2 ≠ 0)
7369, 70, 70, 72, 72divdiv1d 11436 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (((𝑃 − 1) / 2) / 2) = ((𝑃 − 1) / (2 · 2)))
74 2t2e4 11790 . . . . . . . . . . 11 (2 · 2) = 4
7574oveq2i 7156 . . . . . . . . . 10 ((𝑃 − 1) / (2 · 2)) = ((𝑃 − 1) / 4)
7673, 75syl6eq 2872 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (((𝑃 − 1) / 2) / 2) = ((𝑃 − 1) / 4))
7776eleq1d 2897 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((((𝑃 − 1) / 2) / 2) ∈ ℤ ↔ ((𝑃 − 1) / 4) ∈ ℤ))
7868, 77bitr4d 283 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) ↔ (((𝑃 − 1) / 2) / 2) ∈ ℤ))
792nnzd 12075 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℤ)
80 dvdsval2 15600 . . . . . . . 8 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ ((𝑃 − 1) / 2) ∈ ℤ) → (2 ∥ ((𝑃 − 1) / 2) ↔ (((𝑃 − 1) / 2) / 2) ∈ ℤ))
8158, 71, 79, 80mp3an12i 1456 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (2 ∥ ((𝑃 − 1) / 2) ↔ (((𝑃 − 1) / 2) / 2) ∈ ℤ))
8278, 81bitr4d 283 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) ↔ 2 ∥ ((𝑃 − 1) / 2)))
8357, 61, 823imtr4d 295 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) → 4 ∥ (𝑃 − 1)))
8446a1i 11 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → -1 ∈ ℂ)
85 neg1ne0 11742 . . . . . . . . . . . 12 -1 ≠ 0
8685a1i 11 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → -1 ≠ 0)
8758a1i 11 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → 2 ∈ ℤ)
8878biimpa 477 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (((𝑃 − 1) / 2) / 2) ∈ ℤ)
89 expmulz 13465 . . . . . . . . . . 11 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ (((𝑃 − 1) / 2) / 2) ∈ ℤ)) → (-1↑(2 · (((𝑃 − 1) / 2) / 2))) = ((-1↑2)↑(((𝑃 − 1) / 2) / 2)))
9084, 86, 87, 88, 89syl22anc 834 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (-1↑(2 · (((𝑃 − 1) / 2) / 2))) = ((-1↑2)↑(((𝑃 − 1) / 2) / 2)))
912nncnd 11643 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℂ)
9291, 70, 72divcan2d 11407 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → (2 · (((𝑃 − 1) / 2) / 2)) = ((𝑃 − 1) / 2))
9392adantr 481 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (2 · (((𝑃 − 1) / 2) / 2)) = ((𝑃 − 1) / 2))
9493oveq2d 7161 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (-1↑(2 · (((𝑃 − 1) / 2) / 2))) = (-1↑((𝑃 − 1) / 2)))
95 neg1sqe1 13549 . . . . . . . . . . . 12 (-1↑2) = 1
9695oveq1i 7155 . . . . . . . . . . 11 ((-1↑2)↑(((𝑃 − 1) / 2) / 2)) = (1↑(((𝑃 − 1) / 2) / 2))
97 1exp 13448 . . . . . . . . . . . 12 ((((𝑃 − 1) / 2) / 2) ∈ ℤ → (1↑(((𝑃 − 1) / 2) / 2)) = 1)
9888, 97syl 17 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (1↑(((𝑃 − 1) / 2) / 2)) = 1)
9996, 98syl5eq 2868 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → ((-1↑2)↑(((𝑃 − 1) / 2) / 2)) = 1)
10090, 94, 993eqtr3d 2864 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (-1↑((𝑃 − 1) / 2)) = 1)
101100oveq1d 7160 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → ((-1↑((𝑃 − 1) / 2)) + 1) = (1 + 1))
102101, 22syl6reqr 2875 . . . . . . 7 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → 2 = ((-1↑((𝑃 − 1) / 2)) + 1))
103102oveq1d 7160 . . . . . 6 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
104103ex 413 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) → (2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
10583, 104impbid 213 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ 4 ∥ (𝑃 − 1)))
10613, 24, 1053bitr2d 308 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → (((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = 1 ↔ 4 ∥ (𝑃 − 1)))
107 lgsval3 25819 . . . . 5 ((-1 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1 /L 𝑃) = ((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
1081, 107mpan 686 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (-1 /L 𝑃) = ((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
109108eqeq1d 2823 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ ((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = 1))
110 4nn 11709 . . . . 5 4 ∈ ℕ
111110a1i 11 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → 4 ∈ ℕ)
112 prmz 16009 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1137, 112syl 17 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
114 1zzd 12002 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → 1 ∈ ℤ)
115 moddvds 15608 . . . 4 ((4 ∈ ℕ ∧ 𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑃 mod 4) = (1 mod 4) ↔ 4 ∥ (𝑃 − 1)))
116111, 113, 114, 115syl3anc 1363 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 mod 4) = (1 mod 4) ↔ 4 ∥ (𝑃 − 1)))
117106, 109, 1163bitr4d 312 . 2 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = (1 mod 4)))
118 1re 10630 . . . 4 1 ∈ ℝ
119 nnrp 12390 . . . . 5 (4 ∈ ℕ → 4 ∈ ℝ+)
120110, 119ax-mp 5 . . . 4 4 ∈ ℝ+
121 0le1 11152 . . . 4 0 ≤ 1
122 1lt4 11802 . . . 4 1 < 4
123 modid 13254 . . . 4 (((1 ∈ ℝ ∧ 4 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 4)) → (1 mod 4) = 1)
124118, 120, 121, 122, 123mp4an 689 . . 3 (1 mod 4) = 1
125124eqeq2i 2834 . 2 ((𝑃 mod 4) = (1 mod 4) ↔ (𝑃 mod 4) = 1)
126117, 125syl6bb 288 1 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3016  cdif 3932  {csn 4559   class class class wbr 5058  cfv 6349  (class class class)co 7145  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  cn 11627  2c2 11681  4c4 11683  0cn0 11886  cz 11970  cuz 12232  +crp 12379   mod cmo 13227  cexp 13419  cdvds 15597  cprime 16005   /L clgs 25798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-inf 8896  df-dju 9319  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-n0 11887  df-xnn0 11957  df-z 11971  df-uz 12233  df-q 12338  df-rp 12380  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-dvds 15598  df-gcd 15834  df-prm 16006  df-phi 16093  df-pc 16164  df-lgs 25799
This theorem is referenced by:  2sqlem11  25933  2sqblem  25935
  Copyright terms: Public domain W3C validator