Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  m1mod0mod1 Structured version   Visualization version   GIF version

Theorem m1mod0mod1 39857
Description: An integer decreased by 1 is 0 modulo a positive integer iff the integer is 1 modulo the same modulus. (Contributed by AV, 6-Jun-2020.)
Assertion
Ref Expression
m1mod0mod1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))

Proof of Theorem m1mod0mod1
StepHypRef Expression
1 recn 9781 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 npcan1 10206 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴 − 1) + 1) = 𝐴)
32eqcomd 2520 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 = ((𝐴 − 1) + 1))
41, 3syl 17 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 = ((𝐴 − 1) + 1))
543ad2ant1 1074 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝐴 = ((𝐴 − 1) + 1))
65adantr 479 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → 𝐴 = ((𝐴 − 1) + 1))
76oveq1d 6441 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (𝐴 mod 𝑁) = (((𝐴 − 1) + 1) mod 𝑁))
8 simpr 475 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((𝐴 − 1) mod 𝑁) = 0)
9 1mod 12432 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
1093adant1 1071 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
1110adantr 479 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (1 mod 𝑁) = 1)
128, 11oveq12d 6444 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) = (0 + 1))
1312oveq1d 6441 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) mod 𝑁) = ((0 + 1) mod 𝑁))
14 peano2rem 10099 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
15143ad2ant1 1074 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (𝐴 − 1) ∈ ℝ)
16 1red 9810 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 1 ∈ ℝ)
17 simpl 471 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ∈ ℝ)
18 0lt1 10299 . . . . . . . . . . 11 0 < 1
19 0re 9795 . . . . . . . . . . . 12 0 ∈ ℝ
20 1re 9794 . . . . . . . . . . . 12 1 ∈ ℝ
21 lttr 9864 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑁) → 0 < 𝑁))
2219, 20, 21mp3an12 1405 . . . . . . . . . . 11 (𝑁 ∈ ℝ → ((0 < 1 ∧ 1 < 𝑁) → 0 < 𝑁))
2318, 22mpani 707 . . . . . . . . . 10 (𝑁 ∈ ℝ → (1 < 𝑁 → 0 < 𝑁))
2423imp 443 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 0 < 𝑁)
2517, 24elrpd 11611 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ∈ ℝ+)
26253adant1 1071 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ∈ ℝ+)
2715, 16, 263jca 1234 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((𝐴 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
2827adantr 479 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((𝐴 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
29 modaddabs 12438 . . . . 5 (((𝐴 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) mod 𝑁) = (((𝐴 − 1) + 1) mod 𝑁))
3028, 29syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) mod 𝑁) = (((𝐴 − 1) + 1) mod 𝑁))
31 0p1e1 10887 . . . . . . . 8 (0 + 1) = 1
3231oveq1i 6436 . . . . . . 7 ((0 + 1) mod 𝑁) = (1 mod 𝑁)
3332, 9syl5eq 2560 . . . . . 6 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((0 + 1) mod 𝑁) = 1)
34333adant1 1071 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((0 + 1) mod 𝑁) = 1)
3534adantr 479 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((0 + 1) mod 𝑁) = 1)
3613, 30, 353eqtr3d 2556 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (((𝐴 − 1) + 1) mod 𝑁) = 1)
377, 36eqtrd 2548 . 2 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (𝐴 mod 𝑁) = 1)
38 simpr 475 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → (𝐴 mod 𝑁) = 1)
3938eqcomd 2520 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → 1 = (𝐴 mod 𝑁))
4039oveq2d 6442 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → (𝐴 − 1) = (𝐴 − (𝐴 mod 𝑁)))
4140oveq1d 6441 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → ((𝐴 − 1) mod 𝑁) = ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁))
42 simp1 1053 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝐴 ∈ ℝ)
4342, 26modcld 12404 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (𝐴 mod 𝑁) ∈ ℝ)
4443recnd 9823 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (𝐴 mod 𝑁) ∈ ℂ)
4544subidd 10131 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) = 0)
4645oveq1d 6441 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) mod 𝑁) = (0 mod 𝑁))
47 modsubmod 12458 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 mod 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) mod 𝑁) = ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁))
4842, 43, 26, 47syl3anc 1317 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) mod 𝑁) = ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁))
49 0mod 12431 . . . . . 6 (𝑁 ∈ ℝ+ → (0 mod 𝑁) = 0)
5026, 49syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (0 mod 𝑁) = 0)
5146, 48, 503eqtr3d 2556 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁) = 0)
5251adantr 479 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁) = 0)
5341, 52eqtrd 2548 . 2 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → ((𝐴 − 1) mod 𝑁) = 0)
5437, 53impbida 872 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1938   class class class wbr 4481  (class class class)co 6426  cc 9689  cr 9690  0cc0 9691  1c1 9692   + caddc 9694   < clt 9829  cmin 10017  +crp 11574   mod cmo 12398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-cnex 9747  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-mulcom 9755  ax-addass 9756  ax-mulass 9757  ax-distr 9758  ax-i2m1 9759  ax-1ne0 9760  ax-1rid 9761  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766  ax-pre-ltadd 9767  ax-pre-mulgt0 9768  ax-pre-sup 9769
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-om 6834  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-er 7505  df-en 7718  df-dom 7719  df-sdom 7720  df-sup 8107  df-inf 8108  df-pnf 9831  df-mnf 9832  df-xr 9833  df-ltxr 9834  df-le 9835  df-sub 10019  df-neg 10020  df-div 10434  df-nn 10776  df-n0 11048  df-z 11119  df-uz 11428  df-rp 11575  df-fl 12323  df-mod 12399
This theorem is referenced by:  dfodd4  40017  difmodm1lt  42216
  Copyright terms: Public domain W3C validator