Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2cpmf Structured version   Visualization version   GIF version

Theorem m2cpmf 20541
 Description: The matrix transformation is a function from the matrices to the constant polynomial matrices. (Contributed by AV, 18-Nov-2019.)
Hypotheses
Ref Expression
m2cpm.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
m2cpm.t 𝑇 = (𝑁 matToPolyMat 𝑅)
m2cpm.a 𝐴 = (𝑁 Mat 𝑅)
m2cpm.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
m2cpmf ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝑆)

Proof of Theorem m2cpmf
Dummy variables 𝑖 𝑗 𝑏 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
21, 1jca 554 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
32adantr 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝐵) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
4 mpt2exga 7243 . . 3 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘(𝑖𝑚𝑗))) ∈ V)
53, 4syl 17 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝐵) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘(𝑖𝑚𝑗))) ∈ V)
6 m2cpm.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
7 m2cpm.a . . 3 𝐴 = (𝑁 Mat 𝑅)
8 m2cpm.b . . 3 𝐵 = (Base‘𝐴)
9 eqid 2621 . . 3 (Poly1𝑅) = (Poly1𝑅)
10 eqid 2621 . . 3 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
116, 7, 8, 9, 10mat2pmatfval 20522 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘(Poly1𝑅))‘(𝑖𝑚𝑗)))))
12 m2cpm.s . . . 4 𝑆 = (𝑁 ConstPolyMat 𝑅)
1312, 6, 7, 8m2cpm 20540 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵) → (𝑇𝑏) ∈ 𝑆)
14133expa 1264 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑏𝐵) → (𝑇𝑏) ∈ 𝑆)
155, 11, 14fmpt2d 6391 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1482   ∈ wcel 1989  Vcvv 3198  ⟶wf 5882  ‘cfv 5886  (class class class)co 6647   ↦ cmpt2 6649  Fincfn 7952  Basecbs 15851  Ringcrg 18541  algSccascl 19305  Poly1cpl1 19541   Mat cmat 20207   ConstPolyMat ccpmat 20502   matToPolyMat cmat2pmat 20503 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-ot 4184  df-uni 4435  df-int 4474  df-iun 4520  df-iin 4521  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-of 6894  df-ofr 6895  df-om 7063  df-1st 7165  df-2nd 7166  df-supp 7293  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-2o 7558  df-oadd 7561  df-er 7739  df-map 7856  df-pm 7857  df-ixp 7906  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-fsupp 8273  df-sup 8345  df-oi 8412  df-card 8762  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-z 11375  df-dec 11491  df-uz 11685  df-fz 12324  df-fzo 12462  df-seq 12797  df-hash 13113  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-mulr 15949  df-sca 15951  df-vsca 15952  df-ip 15953  df-tset 15954  df-ple 15955  df-ds 15958  df-hom 15960  df-cco 15961  df-0g 16096  df-gsum 16097  df-prds 16102  df-pws 16104  df-mre 16240  df-mrc 16241  df-acs 16243  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-mhm 17329  df-submnd 17330  df-grp 17419  df-minusg 17420  df-sbg 17421  df-mulg 17535  df-subg 17585  df-ghm 17652  df-cntz 17744  df-cmn 18189  df-abl 18190  df-mgp 18484  df-ur 18496  df-ring 18543  df-subrg 18772  df-lmod 18859  df-lss 18927  df-sra 19166  df-rgmod 19167  df-ascl 19308  df-psr 19350  df-mvr 19351  df-mpl 19352  df-opsr 19354  df-psr1 19544  df-vr1 19545  df-ply1 19546  df-coe1 19547  df-dsmm 20070  df-frlm 20085  df-mat 20208  df-cpmat 20505  df-mat2pmat 20506 This theorem is referenced by:  m2cpmf1  20542  m2cpmghm  20543  m2cpmmhm  20544  m2cpmfo  20555  m2cpminv  20559
 Copyright terms: Public domain W3C validator