MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2cpmfo Structured version   Visualization version   GIF version

Theorem m2cpmfo 20783
Description: The matrix transformation is a function from the matrices onto the constant polynomial matrices. (Contributed by AV, 19-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
m2cpmfo.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
m2cpmfo.t 𝑇 = (𝑁 matToPolyMat 𝑅)
m2cpmfo.a 𝐴 = (𝑁 Mat 𝑅)
m2cpmfo.k 𝐾 = (Base‘𝐴)
Assertion
Ref Expression
m2cpmfo ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐾onto𝑆)

Proof of Theorem m2cpmfo
Dummy variables 𝑐 𝑚 𝑥 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 m2cpmfo.s . . 3 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 m2cpmfo.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
3 m2cpmfo.a . . 3 𝐴 = (𝑁 Mat 𝑅)
4 m2cpmfo.k . . 3 𝐾 = (Base‘𝐴)
51, 2, 3, 4m2cpmf 20769 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐾𝑆)
6 eqid 2760 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
7 simplll 815 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑚𝑆) → 𝑁 ∈ Fin)
8 simpllr 817 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑚𝑆) → 𝑅 ∈ Ring)
9 eqid 2760 . . . . . . . . 9 (𝑁 Mat (Poly1𝑅)) = (𝑁 Mat (Poly1𝑅))
10 eqid 2760 . . . . . . . . 9 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
11 eqid 2760 . . . . . . . . 9 (Base‘(𝑁 Mat (Poly1𝑅))) = (Base‘(𝑁 Mat (Poly1𝑅)))
12 simp2 1132 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑚𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
13 simp3 1133 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑚𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
14 eqid 2760 . . . . . . . . . . . . 13 (Poly1𝑅) = (Poly1𝑅)
151, 14, 9, 11cpmatpmat 20737 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑚𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
16153expa 1112 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
1716adantlr 753 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑚𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
18173ad2ant1 1128 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑚𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
199, 10, 11, 12, 13, 18matecld 20454 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑚𝑆) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑚𝑗) ∈ (Base‘(Poly1𝑅)))
20 0nn0 11519 . . . . . . . 8 0 ∈ ℕ0
21 eqid 2760 . . . . . . . . 9 (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑚𝑗))
2221, 10, 14, 6coe1fvalcl 19804 . . . . . . . 8 (((𝑖𝑚𝑗) ∈ (Base‘(Poly1𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑖𝑚𝑗))‘0) ∈ (Base‘𝑅))
2319, 20, 22sylancl 697 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑚𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑚𝑗))‘0) ∈ (Base‘𝑅))
243, 6, 4, 7, 8, 23matbas2d 20451 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑚𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)) ∈ 𝐾)
25 eqid 2760 . . . . . 6 (𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0))) = (𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))
2624, 25fmptd 6549 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → (𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0))):𝑆𝐾)
27 simpr 479 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → 𝑥𝑆)
2826, 27ffvelrnd 6524 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → ((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥) ∈ 𝐾)
29 fveq2 6353 . . . . . 6 (𝑐 = ((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥) → (𝑇𝑐) = (𝑇‘((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥)))
3029eqeq2d 2770 . . . . 5 (𝑐 = ((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥) → (𝑥 = (𝑇𝑐) ↔ 𝑥 = (𝑇‘((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥))))
3130adantl 473 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑐 = ((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥)) → (𝑥 = (𝑇𝑐) ↔ 𝑥 = (𝑇‘((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥))))
32 eqid 2760 . . . . . . . . . . . 12 (𝑁 cPolyMatToMat 𝑅) = (𝑁 cPolyMatToMat 𝑅)
3332, 1cpm2mfval 20776 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 cPolyMatToMat 𝑅) = (𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0))))
3433fveq1d 6355 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑁 cPolyMatToMat 𝑅)‘𝑥) = ((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥))
35343adant3 1127 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) → ((𝑁 cPolyMatToMat 𝑅)‘𝑥) = ((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥))
3635eqcomd 2766 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) → ((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥) = ((𝑁 cPolyMatToMat 𝑅)‘𝑥))
3736fveq2d 6357 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) → (𝑇‘((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥)) = (𝑇‘((𝑁 cPolyMatToMat 𝑅)‘𝑥)))
381, 32, 2m2cpminvid2 20782 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) → (𝑇‘((𝑁 cPolyMatToMat 𝑅)‘𝑥)) = 𝑥)
3937, 38eqtrd 2794 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) → (𝑇‘((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥)) = 𝑥)
40393expa 1112 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → (𝑇‘((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥)) = 𝑥)
4140eqcomd 2766 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → 𝑥 = (𝑇‘((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥)))
4228, 31, 41rspcedvd 3456 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → ∃𝑐𝐾 𝑥 = (𝑇𝑐))
4342ralrimiva 3104 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑐𝐾 𝑥 = (𝑇𝑐))
44 dffo3 6538 . 2 (𝑇:𝐾onto𝑆 ↔ (𝑇:𝐾𝑆 ∧ ∀𝑥𝑆𝑐𝐾 𝑥 = (𝑇𝑐)))
455, 43, 44sylanbrc 701 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐾onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wrex 3051  cmpt 4881  wf 6045  ontowfo 6047  cfv 6049  (class class class)co 6814  cmpt2 6816  Fincfn 8123  0cc0 10148  0cn0 11504  Basecbs 16079  Ringcrg 18767  Poly1cpl1 19769  coe1cco1 19770   Mat cmat 20435   ConstPolyMat ccpmat 20730   matToPolyMat cmat2pmat 20731   cPolyMatToMat ccpmat2mat 20732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-ofr 7064  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-sup 8515  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-fz 12540  df-fzo 12680  df-seq 13016  df-hash 13332  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-hom 16188  df-cco 16189  df-0g 16324  df-gsum 16325  df-prds 16330  df-pws 16332  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-submnd 17557  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mulg 17762  df-subg 17812  df-ghm 17879  df-cntz 17970  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-srg 18726  df-ring 18769  df-subrg 19000  df-lmod 19087  df-lss 19155  df-sra 19394  df-rgmod 19395  df-ascl 19536  df-psr 19578  df-mvr 19579  df-mpl 19580  df-opsr 19582  df-psr1 19772  df-vr1 19773  df-ply1 19774  df-coe1 19775  df-dsmm 20298  df-frlm 20313  df-mat 20436  df-cpmat 20733  df-mat2pmat 20734  df-cpmat2mat 20735
This theorem is referenced by:  m2cpmf1o  20784
  Copyright terms: Public domain W3C validator