![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > m2cpmmhm | Structured version Visualization version GIF version |
Description: The transformation of matrices into constant polynomial matrices is a homomorphism of multiplicative monoids. (Contributed by AV, 18-Nov-2019.) |
Ref | Expression |
---|---|
m2cpm.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
m2cpm.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
m2cpm.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
m2cpm.b | ⊢ 𝐵 = (Base‘𝐴) |
m2cpmghm.p | ⊢ 𝑃 = (Poly1‘𝑅) |
m2cpmghm.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
m2cpmghm.u | ⊢ 𝑈 = (𝐶 ↾s 𝑆) |
Ref | Expression |
---|---|
m2cpmmhm | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | m2cpm.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
2 | m2cpm.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | m2cpm.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
4 | m2cpmghm.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | m2cpmghm.c | . . 3 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
6 | eqid 2651 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
7 | 1, 2, 3, 4, 5, 6 | mat2pmatmhm 20586 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝐶))) |
8 | crngring 18604 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
9 | 8 | anim2i 592 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
10 | m2cpm.s | . . . . 5 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
11 | 10, 4, 5 | cpmatsrgpmat 20574 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐶)) |
12 | eqid 2651 | . . . . 5 ⊢ (mulGrp‘𝐶) = (mulGrp‘𝐶) | |
13 | 12 | subrgsubm 18841 | . . . 4 ⊢ (𝑆 ∈ (SubRing‘𝐶) → 𝑆 ∈ (SubMnd‘(mulGrp‘𝐶))) |
14 | 9, 11, 13 | 3syl 18 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑆 ∈ (SubMnd‘(mulGrp‘𝐶))) |
15 | 10, 1, 2, 3 | m2cpmf 20595 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵⟶𝑆) |
16 | frn 6091 | . . . 4 ⊢ (𝑇:𝐵⟶𝑆 → ran 𝑇 ⊆ 𝑆) | |
17 | 9, 15, 16 | 3syl 18 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ran 𝑇 ⊆ 𝑆) |
18 | ovex 6718 | . . . . . . 7 ⊢ (𝑁 Mat 𝑃) ∈ V | |
19 | 5, 18 | eqeltri 2726 | . . . . . 6 ⊢ 𝐶 ∈ V |
20 | ovex 6718 | . . . . . . 7 ⊢ (𝑁 ConstPolyMat 𝑅) ∈ V | |
21 | 10, 20 | eqeltri 2726 | . . . . . 6 ⊢ 𝑆 ∈ V |
22 | m2cpmghm.u | . . . . . . 7 ⊢ 𝑈 = (𝐶 ↾s 𝑆) | |
23 | 22, 12 | mgpress 18546 | . . . . . 6 ⊢ ((𝐶 ∈ V ∧ 𝑆 ∈ V) → ((mulGrp‘𝐶) ↾s 𝑆) = (mulGrp‘𝑈)) |
24 | 19, 21, 23 | mp2an 708 | . . . . 5 ⊢ ((mulGrp‘𝐶) ↾s 𝑆) = (mulGrp‘𝑈) |
25 | 24 | eqcomi 2660 | . . . 4 ⊢ (mulGrp‘𝑈) = ((mulGrp‘𝐶) ↾s 𝑆) |
26 | 25 | resmhm2b 17408 | . . 3 ⊢ ((𝑆 ∈ (SubMnd‘(mulGrp‘𝐶)) ∧ ran 𝑇 ⊆ 𝑆) → (𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝐶)) ↔ 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑈)))) |
27 | 14, 17, 26 | syl2anc 694 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝐶)) ↔ 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑈)))) |
28 | 7, 27 | mpbid 222 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 ran crn 5144 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 Fincfn 7997 Basecbs 15904 ↾s cress 15905 MndHom cmhm 17380 SubMndcsubmnd 17381 mulGrpcmgp 18535 Ringcrg 18593 CRingccrg 18594 SubRingcsubrg 18824 Poly1cpl1 19595 Mat cmat 20261 ConstPolyMat ccpmat 20556 matToPolyMat cmat2pmat 20557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-ot 4219 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-ofr 6940 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-sup 8389 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-fzo 12505 df-seq 12842 df-hash 13158 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-hom 16013 df-cco 16014 df-0g 16149 df-gsum 16150 df-prds 16155 df-pws 16157 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-submnd 17383 df-grp 17472 df-minusg 17473 df-sbg 17474 df-mulg 17588 df-subg 17638 df-ghm 17705 df-cntz 17796 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-srg 18552 df-ring 18595 df-cring 18596 df-rnghom 18763 df-subrg 18826 df-lmod 18913 df-lss 18981 df-sra 19220 df-rgmod 19221 df-assa 19360 df-ascl 19362 df-psr 19404 df-mvr 19405 df-mpl 19406 df-opsr 19408 df-psr1 19598 df-vr1 19599 df-ply1 19600 df-coe1 19601 df-dsmm 20124 df-frlm 20139 df-mamu 20238 df-mat 20262 df-cpmat 20559 df-mat2pmat 20560 |
This theorem is referenced by: m2cpmrhm 20599 |
Copyright terms: Public domain | W3C validator |