Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madeval2 Structured version   Visualization version   GIF version

Theorem madeval2 33292
Description: Alternative characterization of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.)
Assertion
Ref Expression
madeval2 (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
Distinct variable group:   𝑥,𝐴,𝑎,𝑏

Proof of Theorem madeval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 madeval 33291 . 2 (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
2 scutcut 33268 . . . . . . . . 9 (𝑎 <<s 𝑏 → ((𝑎 |s 𝑏) ∈ No 𝑎 <<s {(𝑎 |s 𝑏)} ∧ {(𝑎 |s 𝑏)} <<s 𝑏))
32simp1d 1138 . . . . . . . 8 (𝑎 <<s 𝑏 → (𝑎 |s 𝑏) ∈ No )
4 eleq1 2902 . . . . . . . . 9 ((𝑎 |s 𝑏) = 𝑥 → ((𝑎 |s 𝑏) ∈ No 𝑥 No ))
54biimpd 231 . . . . . . . 8 ((𝑎 |s 𝑏) = 𝑥 → ((𝑎 |s 𝑏) ∈ No 𝑥 No ))
63, 5mpan9 509 . . . . . . 7 ((𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → 𝑥 No )
76rexlimivw 3284 . . . . . 6 (∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → 𝑥 No )
87rexlimivw 3284 . . . . 5 (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → 𝑥 No )
98pm4.71ri 563 . . . 4 (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) ↔ (𝑥 No ∧ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
109abbii 2888 . . 3 {𝑥 ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)} = {𝑥 ∣ (𝑥 No ∧ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥))}
11 eleq1 2902 . . . . . . 7 (𝑦 = ⟨𝑎, 𝑏⟩ → (𝑦 ∈ <<s ↔ ⟨𝑎, 𝑏⟩ ∈ <<s ))
12 breq1 5071 . . . . . . 7 (𝑦 = ⟨𝑎, 𝑏⟩ → (𝑦 |s 𝑥 ↔ ⟨𝑎, 𝑏⟩ |s 𝑥))
1311, 12anbi12d 632 . . . . . 6 (𝑦 = ⟨𝑎, 𝑏⟩ → ((𝑦 ∈ <<s ∧ 𝑦 |s 𝑥) ↔ (⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥)))
1413rexxp 5715 . . . . 5 (∃𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))(𝑦 ∈ <<s ∧ 𝑦 |s 𝑥) ↔ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥))
15 imaindm 33024 . . . . . . . 8 ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) = ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ dom |s ))
16 dmscut 33274 . . . . . . . . . 10 dom |s = <<s
1716ineq2i 4188 . . . . . . . . 9 ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ dom |s ) = ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )
1817imaeq2i 5929 . . . . . . . 8 ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ dom |s )) = ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ))
1915, 18eqtri 2846 . . . . . . 7 ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) = ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ))
2019eleq2i 2906 . . . . . 6 (𝑥 ∈ ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ↔ 𝑥 ∈ ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )))
21 vex 3499 . . . . . . 7 𝑥 ∈ V
2221elima 5936 . . . . . 6 (𝑥 ∈ ( |s “ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )) ↔ ∃𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )𝑦 |s 𝑥)
23 elin 4171 . . . . . . . . 9 (𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ) ↔ (𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ 𝑦 ∈ <<s ))
2423anbi1i 625 . . . . . . . 8 ((𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ) ∧ 𝑦 |s 𝑥) ↔ ((𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ 𝑦 ∈ <<s ) ∧ 𝑦 |s 𝑥))
25 anass 471 . . . . . . . 8 (((𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ 𝑦 ∈ <<s ) ∧ 𝑦 |s 𝑥) ↔ (𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ (𝑦 ∈ <<s ∧ 𝑦 |s 𝑥)))
2624, 25bitri 277 . . . . . . 7 ((𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s ) ∧ 𝑦 |s 𝑥) ↔ (𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∧ (𝑦 ∈ <<s ∧ 𝑦 |s 𝑥)))
2726rexbii2 3247 . . . . . 6 (∃𝑦 ∈ ((𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∩ <<s )𝑦 |s 𝑥 ↔ ∃𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))(𝑦 ∈ <<s ∧ 𝑦 |s 𝑥))
2820, 22, 273bitri 299 . . . . 5 (𝑥 ∈ ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ↔ ∃𝑦 ∈ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))(𝑦 ∈ <<s ∧ 𝑦 |s 𝑥))
29 df-br 5069 . . . . . . . 8 (𝑎 <<s 𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ <<s )
3029anbi1i 625 . . . . . . 7 ((𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) ↔ (⟨𝑎, 𝑏⟩ ∈ <<s ∧ (𝑎 |s 𝑏) = 𝑥))
31 df-ov 7161 . . . . . . . . . 10 (𝑎 |s 𝑏) = ( |s ‘⟨𝑎, 𝑏⟩)
3231eqeq1i 2828 . . . . . . . . 9 ((𝑎 |s 𝑏) = 𝑥 ↔ ( |s ‘⟨𝑎, 𝑏⟩) = 𝑥)
33 scutf 33275 . . . . . . . . . . 11 |s : <<s ⟶ No
34 ffn 6516 . . . . . . . . . . 11 ( |s : <<s ⟶ No → |s Fn <<s )
3533, 34ax-mp 5 . . . . . . . . . 10 |s Fn <<s
36 fnbrfvb 6720 . . . . . . . . . 10 (( |s Fn <<s ∧ ⟨𝑎, 𝑏⟩ ∈ <<s ) → (( |s ‘⟨𝑎, 𝑏⟩) = 𝑥 ↔ ⟨𝑎, 𝑏⟩ |s 𝑥))
3735, 36mpan 688 . . . . . . . . 9 (⟨𝑎, 𝑏⟩ ∈ <<s → (( |s ‘⟨𝑎, 𝑏⟩) = 𝑥 ↔ ⟨𝑎, 𝑏⟩ |s 𝑥))
3832, 37syl5bb 285 . . . . . . . 8 (⟨𝑎, 𝑏⟩ ∈ <<s → ((𝑎 |s 𝑏) = 𝑥 ↔ ⟨𝑎, 𝑏⟩ |s 𝑥))
3938pm5.32i 577 . . . . . . 7 ((⟨𝑎, 𝑏⟩ ∈ <<s ∧ (𝑎 |s 𝑏) = 𝑥) ↔ (⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥))
4030, 39bitri 277 . . . . . 6 ((𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) ↔ (⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥))
41402rexbii 3250 . . . . 5 (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) ↔ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(⟨𝑎, 𝑏⟩ ∈ <<s ∧ ⟨𝑎, 𝑏⟩ |s 𝑥))
4214, 28, 413bitr4i 305 . . . 4 (𝑥 ∈ ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ↔ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥))
4342abbi2i 2955 . . 3 ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) = {𝑥 ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)}
44 df-rab 3149 . . 3 {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)} = {𝑥 ∣ (𝑥 No ∧ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥))}
4510, 43, 443eqtr4i 2856 . 2 ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)}
461, 45syl6eq 2874 1 (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {cab 2801  wrex 3141  {crab 3144  cin 3937  𝒫 cpw 4541  {csn 4569  cop 4575   cuni 4840   class class class wbr 5068   × cxp 5555  dom cdm 5557  cima 5560  Oncon0 6193   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158   No csur 33149   <<s csslt 33252   |s cscut 33254   M cmade 33281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-wrecs 7949  df-recs 8010  df-1o 8104  df-2o 8105  df-no 33152  df-slt 33153  df-bday 33154  df-sslt 33253  df-scut 33255  df-made 33286
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator