Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madjusmdetlem1 Structured version   Visualization version   GIF version

Theorem madjusmdetlem1 29699
Description: Lemma for madjusmdet 29703. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.b 𝐵 = (Base‘𝐴)
madjusmdet.a 𝐴 = ((1...𝑁) Mat 𝑅)
madjusmdet.d 𝐷 = ((1...𝑁) maDet 𝑅)
madjusmdet.k 𝐾 = ((1...𝑁) maAdju 𝑅)
madjusmdet.t · = (.r𝑅)
madjusmdet.z 𝑍 = (ℤRHom‘𝑅)
madjusmdet.e 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
madjusmdet.n (𝜑𝑁 ∈ ℕ)
madjusmdet.r (𝜑𝑅 ∈ CRing)
madjusmdet.i (𝜑𝐼 ∈ (1...𝑁))
madjusmdet.j (𝜑𝐽 ∈ (1...𝑁))
madjusmdet.m (𝜑𝑀𝐵)
madjusmdetlem1.g 𝐺 = (Base‘(SymGrp‘(1...𝑁)))
madjusmdetlem1.s 𝑆 = (pmSgn‘(1...𝑁))
madjusmdetlem1.u 𝑈 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
madjusmdetlem1.w 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)𝑈(𝑄𝑗)))
madjusmdetlem1.p (𝜑𝑃𝐺)
madjusmdetlem1.q (𝜑𝑄𝐺)
madjusmdetlem1.1 (𝜑 → (𝑃𝑁) = 𝐼)
madjusmdetlem1.2 (𝜑 → (𝑄𝑁) = 𝐽)
madjusmdetlem1.3 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
Assertion
Ref Expression
madjusmdetlem1 (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑄,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗   𝑖,𝐺,𝑗   𝑖,𝑊,𝑗   𝑈,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   𝑆(𝑖,𝑗)   · (𝑖,𝑗)   𝐸(𝑖,𝑗)   𝐾(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem madjusmdetlem1
StepHypRef Expression
1 madjusmdet.m . . . 4 (𝜑𝑀𝐵)
2 madjusmdet.j . . . 4 (𝜑𝐽 ∈ (1...𝑁))
3 madjusmdet.i . . . 4 (𝜑𝐼 ∈ (1...𝑁))
4 madjusmdet.a . . . . 5 𝐴 = ((1...𝑁) Mat 𝑅)
5 madjusmdet.b . . . . 5 𝐵 = (Base‘𝐴)
6 madjusmdet.d . . . . 5 𝐷 = ((1...𝑁) maDet 𝑅)
7 madjusmdet.k . . . . 5 𝐾 = ((1...𝑁) maAdju 𝑅)
84, 5, 6, 7maducoevalmin1 20390 . . . 4 ((𝑀𝐵𝐽 ∈ (1...𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐽(𝐾𝑀)𝐼) = (𝐷‘(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)))
91, 2, 3, 8syl3anc 1323 . . 3 (𝜑 → (𝐽(𝐾𝑀)𝐼) = (𝐷‘(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)))
10 madjusmdetlem1.u . . . 4 𝑈 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
1110fveq2i 6156 . . 3 (𝐷𝑈) = (𝐷‘(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽))
129, 11syl6eqr 2673 . 2 (𝜑 → (𝐽(𝐾𝑀)𝐼) = (𝐷𝑈))
13 madjusmdetlem1.g . . 3 𝐺 = (Base‘(SymGrp‘(1...𝑁)))
14 madjusmdetlem1.s . . 3 𝑆 = (pmSgn‘(1...𝑁))
15 madjusmdet.z . . 3 𝑍 = (ℤRHom‘𝑅)
16 madjusmdet.t . . 3 · = (.r𝑅)
17 madjusmdetlem1.w . . 3 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)𝑈(𝑄𝑗)))
18 madjusmdet.r . . 3 (𝜑𝑅 ∈ CRing)
19 fzfid 12720 . . 3 (𝜑 → (1...𝑁) ∈ Fin)
20 crngring 18490 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2118, 20syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
224, 5minmar1cl 20389 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ∈ 𝐵)
2321, 1, 3, 2, 22syl22anc 1324 . . . 4 (𝜑 → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ∈ 𝐵)
2410, 23syl5eqel 2702 . . 3 (𝜑𝑈𝐵)
25 madjusmdetlem1.p . . 3 (𝜑𝑃𝐺)
26 madjusmdetlem1.q . . 3 (𝜑𝑄𝐺)
274, 5, 6, 13, 14, 15, 16, 17, 18, 19, 24, 25, 26mdetpmtr12 29697 . 2 (𝜑 → (𝐷𝑈) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝑊)))
28 simplr 791 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝑖 = 𝑁)
2928fveq2d 6157 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑃𝑖) = (𝑃𝑁))
30 madjusmdetlem1.1 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃𝑁) = 𝐼)
31303ad2ant1 1080 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑃𝑁) = 𝐼)
3231ad2antrr 761 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑃𝑁) = 𝐼)
3329, 32eqtrd 2655 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑃𝑖) = 𝐼)
34 simpr 477 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝑗 = 𝑁)
3534fveq2d 6157 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑄𝑗) = (𝑄𝑁))
36 madjusmdetlem1.2 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄𝑁) = 𝐽)
37363ad2ant1 1080 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄𝑁) = 𝐽)
3837ad2antrr 761 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑄𝑁) = 𝐽)
3935, 38eqtrd 2655 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑄𝑗) = 𝐽)
4033, 39oveq12d 6628 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) = (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)𝐽))
4113ad2ant1 1080 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑀𝐵)
4241ad2antrr 761 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝑀𝐵)
4333ad2ant1 1080 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝐼 ∈ (1...𝑁))
4443ad2antrr 761 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝐼 ∈ (1...𝑁))
4523ad2ant1 1080 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝐽 ∈ (1...𝑁))
4645ad2antrr 761 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝐽 ∈ (1...𝑁))
47 eqid 2621 . . . . . . . . . . . . 13 ((1...𝑁) minMatR1 𝑅) = ((1...𝑁) minMatR1 𝑅)
48 eqid 2621 . . . . . . . . . . . . 13 (1r𝑅) = (1r𝑅)
49 eqid 2621 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
504, 5, 47, 48, 49minmar1eval 20387 . . . . . . . . . . . 12 ((𝑀𝐵 ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)𝐽) = if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)))
5142, 44, 46, 44, 46, 50syl122anc 1332 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)𝐽) = if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)))
52 eqid 2621 . . . . . . . . . . . . . 14 𝐼 = 𝐼
5352iftruei 4070 . . . . . . . . . . . . 13 if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)) = if(𝐽 = 𝐽, (1r𝑅), (0g𝑅))
54 eqid 2621 . . . . . . . . . . . . . 14 𝐽 = 𝐽
5554iftruei 4070 . . . . . . . . . . . . 13 if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)) = (1r𝑅)
5653, 55eqtri 2643 . . . . . . . . . . . 12 if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)) = (1r𝑅)
5756a1i 11 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)) = (1r𝑅))
5840, 51, 573eqtrrd 2660 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (1r𝑅) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
59 simplr 791 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝑖 = 𝑁)
6059fveq2d 6157 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝑃𝑖) = (𝑃𝑁))
6131ad2antrr 761 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝑃𝑁) = 𝐼)
6260, 61eqtrd 2655 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝑃𝑖) = 𝐼)
6362oveq1d 6625 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) = (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
6441ad2antrr 761 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝑀𝐵)
6543ad2antrr 761 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝐼 ∈ (1...𝑁))
6645ad2antrr 761 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝐽 ∈ (1...𝑁))
67263ad2ant1 1080 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑄𝐺)
68 simp3 1061 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
69 eqid 2621 . . . . . . . . . . . . . . 15 (SymGrp‘(1...𝑁)) = (SymGrp‘(1...𝑁))
7069, 13symgfv 17739 . . . . . . . . . . . . . 14 ((𝑄𝐺𝑗 ∈ (1...𝑁)) → (𝑄𝑗) ∈ (1...𝑁))
7167, 68, 70syl2anc 692 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄𝑗) ∈ (1...𝑁))
7271ad2antrr 761 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝑄𝑗) ∈ (1...𝑁))
734, 5, 47, 48, 49minmar1eval 20387 . . . . . . . . . . . 12 ((𝑀𝐵 ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁)) ∧ (𝐼 ∈ (1...𝑁) ∧ (𝑄𝑗) ∈ (1...𝑁))) → (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) = if(𝐼 = 𝐼, if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀(𝑄𝑗))))
7464, 65, 66, 65, 72, 73syl122anc 1332 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) = if(𝐼 = 𝐼, if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀(𝑄𝑗))))
7552a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝐼 = 𝐼)
7675iftrued 4071 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → if(𝐼 = 𝐼, if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀(𝑄𝑗))) = if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)))
77 simpr 477 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → (𝑄𝑗) = 𝐽)
7877fveq2d 6157 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → (𝑄‘(𝑄𝑗)) = (𝑄𝐽))
7969, 13symgbasf1o 17735 . . . . . . . . . . . . . . . . . . . 20 (𝑄𝐺𝑄:(1...𝑁)–1-1-onto→(1...𝑁))
8067, 79syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑄:(1...𝑁)–1-1-onto→(1...𝑁))
8180ad2antrr 761 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → 𝑄:(1...𝑁)–1-1-onto→(1...𝑁))
8268ad2antrr 761 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → 𝑗 ∈ (1...𝑁))
83 f1ocnvfv1 6492 . . . . . . . . . . . . . . . . . 18 ((𝑄:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄‘(𝑄𝑗)) = 𝑗)
8481, 82, 83syl2anc 692 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → (𝑄‘(𝑄𝑗)) = 𝑗)
8536fveq2d 6157 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑄‘(𝑄𝑁)) = (𝑄𝐽))
8626, 79syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑄:(1...𝑁)–1-1-onto→(1...𝑁))
87 madjusmdet.n . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑁 ∈ ℕ)
88 nnuz 11675 . . . . . . . . . . . . . . . . . . . . . . 23 ℕ = (ℤ‘1)
8987, 88syl6eleq 2708 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑁 ∈ (ℤ‘1))
90 eluzfz2 12299 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
9189, 90syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑁 ∈ (1...𝑁))
92 f1ocnvfv1 6492 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → (𝑄‘(𝑄𝑁)) = 𝑁)
9386, 91, 92syl2anc 692 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑄‘(𝑄𝑁)) = 𝑁)
9485, 93eqtr3d 2657 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑄𝐽) = 𝑁)
95943ad2ant1 1080 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄𝐽) = 𝑁)
9695ad2antrr 761 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → (𝑄𝐽) = 𝑁)
9778, 84, 963eqtr3d 2663 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → 𝑗 = 𝑁)
9897ex 450 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) → ((𝑄𝑗) = 𝐽𝑗 = 𝑁))
9998con3d 148 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) → (¬ 𝑗 = 𝑁 → ¬ (𝑄𝑗) = 𝐽))
10099imp 445 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → ¬ (𝑄𝑗) = 𝐽)
101100iffalsed 4074 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)) = (0g𝑅))
10276, 101eqtrd 2655 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → if(𝐼 = 𝐼, if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀(𝑄𝑗))) = (0g𝑅))
10363, 74, 1023eqtrrd 2660 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (0g𝑅) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
10458, 103ifeqda 4098 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) → if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
105 simp2 1060 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
106105adantr 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ ¬ 𝑖 = 𝑁) → 𝑖 ∈ (1...𝑁))
10768adantr 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ ¬ 𝑖 = 𝑁) → 𝑗 ∈ (1...𝑁))
108 ovexd 6640 . . . . . . . . . 10 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ ¬ 𝑖 = 𝑁) → ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) ∈ V)
10910oveqi 6623 . . . . . . . . . . . . . 14 ((𝑃𝑖)𝑈(𝑄𝑗)) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗))
110109a1i 11 . . . . . . . . . . . . 13 ((𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑃𝑖)𝑈(𝑄𝑗)) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
111110mpt2eq3ia 6680 . . . . . . . . . . . 12 (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)𝑈(𝑄𝑗))) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
11217, 111eqtri 2643 . . . . . . . . . . 11 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
113112ovmpt4g 6743 . . . . . . . . . 10 ((𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁) ∧ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) ∈ V) → (𝑖𝑊𝑗) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
114106, 107, 108, 113syl3anc 1323 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ ¬ 𝑖 = 𝑁) → (𝑖𝑊𝑗) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
115104, 114ifeqda 4098 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → if(𝑖 = 𝑁, if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)), (𝑖𝑊𝑗)) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
116115mpt2eq3dva 6679 . . . . . . 7 (𝜑 → (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ if(𝑖 = 𝑁, if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)), (𝑖𝑊𝑗))) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗))))
117 eqid 2621 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
118253ad2ant1 1080 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑃𝐺)
11969, 13symgfv 17739 . . . . . . . . . . . 12 ((𝑃𝐺𝑖 ∈ (1...𝑁)) → (𝑃𝑖) ∈ (1...𝑁))
120118, 105, 119syl2anc 692 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑃𝑖) ∈ (1...𝑁))
121243ad2ant1 1080 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑈𝐵)
1224, 117, 5, 120, 71, 121matecld 20164 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑃𝑖)𝑈(𝑄𝑗)) ∈ (Base‘𝑅))
1234, 117, 5, 19, 18, 122matbas2d 20161 . . . . . . . . 9 (𝜑 → (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)𝑈(𝑄𝑗))) ∈ 𝐵)
12417, 123syl5eqel 2702 . . . . . . . 8 (𝜑𝑊𝐵)
125117, 48ringidcl 18500 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
12621, 125syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
127 eqid 2621 . . . . . . . . 9 ((1...𝑁) matRRep 𝑅) = ((1...𝑁) matRRep 𝑅)
1284, 5, 127, 49marrepval 20300 . . . . . . . 8 (((𝑊𝐵 ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ (𝑁 ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁))) → (𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ if(𝑖 = 𝑁, if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)), (𝑖𝑊𝑗))))
129124, 126, 91, 91, 128syl22anc 1324 . . . . . . 7 (𝜑 → (𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ if(𝑖 = 𝑁, if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)), (𝑖𝑊𝑗))))
130112a1i 11 . . . . . . 7 (𝜑𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗))))
131116, 129, 1303eqtr4d 2665 . . . . . 6 (𝜑 → (𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁) = 𝑊)
132131fveq2d 6157 . . . . 5 (𝜑 → (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = (𝐷𝑊))
133 eqid 2621 . . . . . . . . . . . 12 ((1...𝑁) subMat 𝑅) = ((1...𝑁) subMat 𝑅)
1344, 133, 5submaval 20319 . . . . . . . . . . 11 ((𝑊𝐵𝑁 ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑊𝑗)))
135124, 91, 91, 134syl3anc 1323 . . . . . . . . . 10 (𝜑 → (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑊𝑗)))
136 fzdif2 29416 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
13789, 136syl 17 . . . . . . . . . . 11 (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
138 mpt2eq12 6675 . . . . . . . . . . 11 ((((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)) ∧ ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑊𝑗)) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)))
139137, 137, 138syl2anc 692 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑊𝑗)) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)))
140135, 139eqtrd 2655 . . . . . . . . 9 (𝜑 → (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)))
141 difssd 3721 . . . . . . . . . . 11 (𝜑 → ((1...𝑁) ∖ {𝑁}) ⊆ (1...𝑁))
142137, 141eqsstr3d 3624 . . . . . . . . . 10 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
1434, 5submabas 20316 . . . . . . . . . 10 ((𝑊𝐵 ∧ (1...(𝑁 − 1)) ⊆ (1...𝑁)) → (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
144124, 142, 143syl2anc 692 . . . . . . . . 9 (𝜑 → (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
145140, 144eqeltrd 2698 . . . . . . . 8 (𝜑 → (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
146 madjusmdet.e . . . . . . . . 9 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
147 eqid 2621 . . . . . . . . 9 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
148 eqid 2621 . . . . . . . . 9 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
149146, 147, 148, 117mdetcl 20334 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) → (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)) ∈ (Base‘𝑅))
15018, 145, 149syl2anc 692 . . . . . . 7 (𝜑 → (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)) ∈ (Base‘𝑅))
151117, 16, 48ringlidm 18503 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)) ∈ (Base‘𝑅)) → ((1r𝑅) · (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) = (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
15221, 150, 151syl2anc 692 . . . . . 6 (𝜑 → ((1r𝑅) · (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) = (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
1534fveq2i 6156 . . . . . . . . . . 11 (Base‘𝐴) = (Base‘((1...𝑁) Mat 𝑅))
1545, 153eqtri 2643 . . . . . . . . . 10 𝐵 = (Base‘((1...𝑁) Mat 𝑅))
155124, 154syl6eleq 2708 . . . . . . . . 9 (𝜑𝑊 ∈ (Base‘((1...𝑁) Mat 𝑅)))
156 smadiadetr 20413 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑊 ∈ (Base‘((1...𝑁) Mat 𝑅))) ∧ (𝑁 ∈ (1...𝑁) ∧ (1r𝑅) ∈ (Base‘𝑅))) → (((1...𝑁) maDet 𝑅)‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅)(.r𝑅)((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
15718, 155, 91, 126, 156syl22anc 1324 . . . . . . . 8 (𝜑 → (((1...𝑁) maDet 𝑅)‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅)(.r𝑅)((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
1586fveq1i 6154 . . . . . . . . 9 (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = (((1...𝑁) maDet 𝑅)‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁))
15916oveqi 6623 . . . . . . . . 9 ((1r𝑅) · ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) = ((1r𝑅)(.r𝑅)((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
160158, 159eqeq12i 2635 . . . . . . . 8 ((𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅) · ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) ↔ (((1...𝑁) maDet 𝑅)‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅)(.r𝑅)((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
161157, 160sylibr 224 . . . . . . 7 (𝜑 → (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅) · ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
162137oveq1d 6625 . . . . . . . . . 10 (𝜑 → (((1...𝑁) ∖ {𝑁}) maDet 𝑅) = ((1...(𝑁 − 1)) maDet 𝑅))
163162, 146syl6eqr 2673 . . . . . . . . 9 (𝜑 → (((1...𝑁) ∖ {𝑁}) maDet 𝑅) = 𝐸)
164163fveq1d 6155 . . . . . . . 8 (𝜑 → ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)) = (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
165164oveq2d 6626 . . . . . . 7 (𝜑 → ((1r𝑅) · ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) = ((1r𝑅) · (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
166161, 165eqtrd 2655 . . . . . 6 (𝜑 → (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅) · (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
1674, 5submat1n 29677 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑊𝐵) → (𝑁(subMat1‘𝑊)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))
16887, 124, 167syl2anc 692 . . . . . . 7 (𝜑 → (𝑁(subMat1‘𝑊)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))
169168fveq2d 6157 . . . . . 6 (𝜑 → (𝐸‘(𝑁(subMat1‘𝑊)𝑁)) = (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
170152, 166, 1693eqtr4d 2665 . . . . 5 (𝜑 → (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = (𝐸‘(𝑁(subMat1‘𝑊)𝑁)))
171132, 170eqtr3d 2657 . . . 4 (𝜑 → (𝐷𝑊) = (𝐸‘(𝑁(subMat1‘𝑊)𝑁)))
1724, 5, 87, 3, 2, 21, 1, 10submatminr1 29682 . . . . . 6 (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝑈)𝐽))
173 madjusmdetlem1.3 . . . . . 6 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
174172, 173eqtrd 2655 . . . . 5 (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
175174fveq2d 6157 . . . 4 (𝜑 → (𝐸‘(𝐼(subMat1‘𝑀)𝐽)) = (𝐸‘(𝑁(subMat1‘𝑊)𝑁)))
176171, 175eqtr4d 2658 . . 3 (𝜑 → (𝐷𝑊) = (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))
177176oveq2d 6626 . 2 (𝜑 → ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝑊)) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
17812, 27, 1773eqtrd 2659 1 (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3189  cdif 3556  wss 3559  ifcif 4063  {csn 4153  ccnv 5078  1-1-ontowf1o 5851  cfv 5852  (class class class)co 6610  cmpt2 6612  1c1 9889   · cmul 9893  cmin 10218  cn 10972  cuz 11639  ...cfz 12276  Basecbs 15792  .rcmulr 15874  0gc0g 16032  SymGrpcsymg 17729  pmSgncpsgn 17841  1rcur 18433  Ringcrg 18479  CRingccrg 18480  ℤRHomczrh 19780   Mat cmat 20145   matRRep cmarrep 20294   subMat csubma 20314   maDet cmdat 20322   maAdju cmadu 20370   minMatR1 cminmar1 20371  subMat1csmat 29665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-xor 1462  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-ot 4162  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-tpos 7304  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-sup 8300  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-xnn0 11316  df-z 11330  df-dec 11446  df-uz 11640  df-rp 11785  df-fz 12277  df-fzo 12415  df-seq 12750  df-exp 12809  df-hash 13066  df-word 13246  df-lsw 13247  df-concat 13248  df-s1 13249  df-substr 13250  df-splice 13251  df-reverse 13252  df-s2 13538  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-0g 16034  df-gsum 16035  df-prds 16040  df-pws 16042  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-mhm 17267  df-submnd 17268  df-grp 17357  df-minusg 17358  df-mulg 17473  df-subg 17523  df-ghm 17590  df-gim 17633  df-cntz 17682  df-oppg 17708  df-symg 17730  df-pmtr 17794  df-psgn 17843  df-cmn 18127  df-abl 18128  df-mgp 18422  df-ur 18434  df-ring 18481  df-cring 18482  df-oppr 18555  df-dvdsr 18573  df-unit 18574  df-invr 18604  df-dvr 18615  df-rnghom 18647  df-drng 18681  df-subrg 18710  df-sra 19104  df-rgmod 19105  df-cnfld 19679  df-zring 19751  df-zrh 19784  df-dsmm 20008  df-frlm 20023  df-mat 20146  df-marrep 20296  df-subma 20315  df-mdet 20323  df-madu 20372  df-minmar1 20373  df-smat 29666
This theorem is referenced by:  madjusmdetlem4  29702
  Copyright terms: Public domain W3C validator