MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maducoeval Structured version   Visualization version   GIF version

Theorem maducoeval 21247
Description: An entry of the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.)
Hypotheses
Ref Expression
madufval.a 𝐴 = (𝑁 Mat 𝑅)
madufval.d 𝐷 = (𝑁 maDet 𝑅)
madufval.j 𝐽 = (𝑁 maAdju 𝑅)
madufval.b 𝐵 = (Base‘𝐴)
madufval.o 1 = (1r𝑅)
madufval.z 0 = (0g𝑅)
Assertion
Ref Expression
maducoeval ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
Distinct variable groups:   𝑘,𝑁,𝑙   𝑅,𝑘,𝑙   𝑘,𝑀,𝑙   𝑘,𝐼,𝑙   𝑘,𝐻,𝑙
Allowed substitution hints:   𝐴(𝑘,𝑙)   𝐵(𝑘,𝑙)   𝐷(𝑘,𝑙)   1 (𝑘,𝑙)   𝐽(𝑘,𝑙)   0 (𝑘,𝑙)

Proof of Theorem maducoeval
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 madufval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 madufval.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
3 madufval.j . . . 4 𝐽 = (𝑁 maAdju 𝑅)
4 madufval.b . . . 4 𝐵 = (Base‘𝐴)
5 madufval.o . . . 4 1 = (1r𝑅)
6 madufval.z . . . 4 0 = (0g𝑅)
71, 2, 3, 4, 5, 6maduval 21246 . . 3 (𝑀𝐵 → (𝐽𝑀) = (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))))))
873ad2ant1 1129 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐽𝑀) = (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))))))
9 simp1r 1194 . . . . . . 7 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → 𝑗 = 𝐻)
109eqeq2d 2832 . . . . . 6 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → (𝑘 = 𝑗𝑘 = 𝐻))
11 simp1l 1193 . . . . . . . 8 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → 𝑖 = 𝐼)
1211eqeq2d 2832 . . . . . . 7 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → (𝑙 = 𝑖𝑙 = 𝐼))
1312ifbid 4488 . . . . . 6 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → if(𝑙 = 𝑖, 1 , 0 ) = if(𝑙 = 𝐼, 1 , 0 ))
1410, 13ifbieq1d 4489 . . . . 5 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))
1514mpoeq3dva 7230 . . . 4 ((𝑖 = 𝐼𝑗 = 𝐻) → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))
1615fveq2d 6673 . . 3 ((𝑖 = 𝐼𝑗 = 𝐻) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
1716adantl 484 . 2 (((𝑀𝐵𝐼𝑁𝐻𝑁) ∧ (𝑖 = 𝐼𝑗 = 𝐻)) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
18 simp2 1133 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → 𝐼𝑁)
19 simp3 1134 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → 𝐻𝑁)
20 fvexd 6684 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))) ∈ V)
218, 17, 18, 19, 20ovmpod 7301 1 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3494  ifcif 4466  cfv 6354  (class class class)co 7155  cmpo 7157  Basecbs 16482  0gc0g 16712  1rcur 19250   Mat cmat 21015   maDet cmdat 21192   maAdju cmadu 21240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-slot 16486  df-base 16488  df-mat 21016  df-madu 21242
This theorem is referenced by:  maducoeval2  21248  madugsum  21251  maducoevalmin1  21260
  Copyright terms: Public domain W3C validator