MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madugsum Structured version   Visualization version   GIF version

Theorem madugsum 20368
Description: The determinant of a matrix with a row 𝐿 consisting of the same element 𝑋 is the sum of the elements of the 𝐿-th column of the adjunct of the matrix multiplied with 𝑋. (Contributed by Stefan O'Rear, 16-Jul-2018.)
Hypotheses
Ref Expression
maduf.a 𝐴 = (𝑁 Mat 𝑅)
maduf.j 𝐽 = (𝑁 maAdju 𝑅)
maduf.b 𝐵 = (Base‘𝐴)
madugsum.d 𝐷 = (𝑁 maDet 𝑅)
madugsum.t · = (.r𝑅)
madugsum.k 𝐾 = (Base‘𝑅)
madugsum.m (𝜑𝑀𝐵)
madugsum.r (𝜑𝑅 ∈ CRing)
madugsum.x ((𝜑𝑖𝑁) → 𝑋𝐾)
madugsum.l (𝜑𝐿𝑁)
Assertion
Ref Expression
madugsum (𝜑 → (𝑅 Σg (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿)))) = (𝐷‘(𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝐵,𝑖,𝑗   𝜑,𝑖,𝑗   𝑖,𝐽   𝑖,𝐾,𝑗   𝑖,𝑀,𝑗   𝑗,𝑋   · ,𝑖   𝑖,𝐿,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   · (𝑗)   𝐽(𝑗)   𝑋(𝑖)

Proof of Theorem madugsum
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpteq1 4697 . . . . 5 (𝑐 = ∅ → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
21oveq2d 6620 . . . 4 (𝑐 = ∅ → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
3 eleq2 2687 . . . . . . . 8 (𝑐 = ∅ → (𝑏𝑐𝑏 ∈ ∅))
43ifbid 4080 . . . . . . 7 (𝑐 = ∅ → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)))
54ifeq1d 4076 . . . . . 6 (𝑐 = ∅ → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
65mpt2eq3dv 6674 . . . . 5 (𝑐 = ∅ → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
76fveq2d 6152 . . . 4 (𝑐 = ∅ → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
82, 7eqeq12d 2636 . . 3 (𝑐 = ∅ → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
9 mpteq1 4697 . . . . 5 (𝑐 = 𝑑 → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
109oveq2d 6620 . . . 4 (𝑐 = 𝑑 → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
11 eleq2 2687 . . . . . . . 8 (𝑐 = 𝑑 → (𝑏𝑐𝑏𝑑))
1211ifbid 4080 . . . . . . 7 (𝑐 = 𝑑 → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)))
1312ifeq1d 4076 . . . . . 6 (𝑐 = 𝑑 → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
1413mpt2eq3dv 6674 . . . . 5 (𝑐 = 𝑑 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
1514fveq2d 6152 . . . 4 (𝑐 = 𝑑 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
1610, 15eqeq12d 2636 . . 3 (𝑐 = 𝑑 → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
17 mpteq1 4697 . . . . 5 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
1817oveq2d 6620 . . . 4 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
19 eleq2 2687 . . . . . . . 8 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑏𝑐𝑏 ∈ (𝑑 ∪ {𝑒})))
2019ifbid 4080 . . . . . . 7 (𝑐 = (𝑑 ∪ {𝑒}) → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)))
2120ifeq1d 4076 . . . . . 6 (𝑐 = (𝑑 ∪ {𝑒}) → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
2221mpt2eq3dv 6674 . . . . 5 (𝑐 = (𝑑 ∪ {𝑒}) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
2322fveq2d 6152 . . . 4 (𝑐 = (𝑑 ∪ {𝑒}) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
2418, 23eqeq12d 2636 . . 3 (𝑐 = (𝑑 ∪ {𝑒}) → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
25 mpteq1 4697 . . . . 5 (𝑐 = 𝑁 → (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
2625oveq2d 6620 . . . 4 (𝑐 = 𝑁 → (𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))))
27 eleq2 2687 . . . . . . . 8 (𝑐 = 𝑁 → (𝑏𝑐𝑏𝑁))
2827ifbid 4080 . . . . . . 7 (𝑐 = 𝑁 → if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)))
2928ifeq1d 4076 . . . . . 6 (𝑐 = 𝑁 → if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
3029mpt2eq3dv 6674 . . . . 5 (𝑐 = 𝑁 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
3130fveq2d 6152 . . . 4 (𝑐 = 𝑁 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
3226, 31eqeq12d 2636 . . 3 (𝑐 = 𝑁 → ((𝑅 Σg (𝑏𝑐 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑐, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) ↔ (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
33 noel 3895 . . . . . . . . 9 ¬ 𝑏 ∈ ∅
34 iffalse 4067 . . . . . . . . 9 𝑏 ∈ ∅ → if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)) = (0g𝑅))
3533, 34mp1i 13 . . . . . . . 8 ((𝑎𝑁𝑏𝑁) → if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)) = (0g𝑅))
3635ifeq1d 4076 . . . . . . 7 ((𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏)))
3736mpt2eq3ia 6673 . . . . . 6 (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏)))
3837fveq2i 6151 . . . . 5 (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏))))
39 madugsum.d . . . . . 6 𝐷 = (𝑁 maDet 𝑅)
40 madugsum.k . . . . . 6 𝐾 = (Base‘𝑅)
41 eqid 2621 . . . . . 6 (0g𝑅) = (0g𝑅)
42 madugsum.r . . . . . 6 (𝜑𝑅 ∈ CRing)
43 madugsum.m . . . . . . . 8 (𝜑𝑀𝐵)
44 maduf.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
45 maduf.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
4644, 45matrcl 20137 . . . . . . . 8 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
4743, 46syl 17 . . . . . . 7 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
4847simpld 475 . . . . . 6 (𝜑𝑁 ∈ Fin)
4944, 40, 45matbas2i 20147 . . . . . . . . 9 (𝑀𝐵𝑀 ∈ (𝐾𝑚 (𝑁 × 𝑁)))
50 elmapi 7823 . . . . . . . . 9 (𝑀 ∈ (𝐾𝑚 (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶𝐾)
5143, 49, 503syl 18 . . . . . . . 8 (𝜑𝑀:(𝑁 × 𝑁)⟶𝐾)
5251fovrnda 6758 . . . . . . 7 ((𝜑 ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑀𝑏) ∈ 𝐾)
53523impb 1257 . . . . . 6 ((𝜑𝑎𝑁𝑏𝑁) → (𝑎𝑀𝑏) ∈ 𝐾)
54 madugsum.l . . . . . 6 (𝜑𝐿𝑁)
5539, 40, 41, 42, 48, 53, 54mdetr0 20330 . . . . 5 (𝜑 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (0g𝑅), (𝑎𝑀𝑏)))) = (0g𝑅))
5638, 55syl5eq 2667 . . . 4 (𝜑 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (0g𝑅))
57 mpt0 5978 . . . . . 6 (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))) = ∅
5857oveq2i 6615 . . . . 5 (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝑅 Σg ∅)
5941gsum0 17199 . . . . 5 (𝑅 Σg ∅) = (0g𝑅)
6058, 59eqtri 2643 . . . 4 (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (0g𝑅)
6156, 60syl6reqr 2674 . . 3 (𝜑 → (𝑅 Σg (𝑏 ∈ ∅ ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ ∅, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
62 eqid 2621 . . . . . . 7 (+g𝑅) = (+g𝑅)
6342adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ CRing)
64 crngring 18479 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
6563, 64syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ Ring)
66 ringcmn 18502 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6765, 66syl 17 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ CMnd)
6848adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑁 ∈ Fin)
69 simprl 793 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑑𝑁)
70 ssfi 8124 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑑𝑁) → 𝑑 ∈ Fin)
7168, 69, 70syl2anc 692 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑑 ∈ Fin)
7265adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝑅 ∈ Ring)
7369sselda 3583 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝑏𝑁)
74 madugsum.x . . . . . . . . . . 11 ((𝜑𝑖𝑁) → 𝑋𝐾)
7574ralrimiva 2960 . . . . . . . . . 10 (𝜑 → ∀𝑖𝑁 𝑋𝐾)
7675ad2antrr 761 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → ∀𝑖𝑁 𝑋𝐾)
77 rspcsbela 3978 . . . . . . . . 9 ((𝑏𝑁 ∧ ∀𝑖𝑁 𝑋𝐾) → 𝑏 / 𝑖𝑋𝐾)
7873, 76, 77syl2anc 692 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝑏 / 𝑖𝑋𝐾)
79 maduf.j . . . . . . . . . . . . . 14 𝐽 = (𝑁 maAdju 𝑅)
8044, 79, 45maduf 20366 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝐽:𝐵𝐵)
8142, 80syl 17 . . . . . . . . . . . 12 (𝜑𝐽:𝐵𝐵)
8281, 43ffvelrnd 6316 . . . . . . . . . . 11 (𝜑 → (𝐽𝑀) ∈ 𝐵)
8344, 40, 45matbas2i 20147 . . . . . . . . . . 11 ((𝐽𝑀) ∈ 𝐵 → (𝐽𝑀) ∈ (𝐾𝑚 (𝑁 × 𝑁)))
84 elmapi 7823 . . . . . . . . . . 11 ((𝐽𝑀) ∈ (𝐾𝑚 (𝑁 × 𝑁)) → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
8582, 83, 843syl 18 . . . . . . . . . 10 (𝜑 → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
8685ad2antrr 761 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
8754ad2antrr 761 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → 𝐿𝑁)
8886, 73, 87fovrnd 6759 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → (𝑏(𝐽𝑀)𝐿) ∈ 𝐾)
89 madugsum.t . . . . . . . . 9 · = (.r𝑅)
9040, 89ringcl 18482 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑏 / 𝑖𝑋𝐾 ∧ (𝑏(𝐽𝑀)𝐿) ∈ 𝐾) → (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)) ∈ 𝐾)
9172, 78, 88, 90syl3anc 1323 . . . . . . 7 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏𝑑) → (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)) ∈ 𝐾)
92 vex 3189 . . . . . . . 8 𝑒 ∈ V
9392a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑒 ∈ V)
94 eldifn 3711 . . . . . . . 8 (𝑒 ∈ (𝑁𝑑) → ¬ 𝑒𝑑)
9594ad2antll 764 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ¬ 𝑒𝑑)
96 eldifi 3710 . . . . . . . . . 10 (𝑒 ∈ (𝑁𝑑) → 𝑒𝑁)
9796ad2antll 764 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑒𝑁)
9875adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ∀𝑖𝑁 𝑋𝐾)
99 rspcsbela 3978 . . . . . . . . 9 ((𝑒𝑁 ∧ ∀𝑖𝑁 𝑋𝐾) → 𝑒 / 𝑖𝑋𝐾)
10097, 98, 99syl2anc 692 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑒 / 𝑖𝑋𝐾)
10185adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐽𝑀):(𝑁 × 𝑁)⟶𝐾)
10254adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝐿𝑁)
103101, 97, 102fovrnd 6759 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒(𝐽𝑀)𝐿) ∈ 𝐾)
10440, 89ringcl 18482 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾 ∧ (𝑒(𝐽𝑀)𝐿) ∈ 𝐾) → (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)) ∈ 𝐾)
10565, 100, 103, 104syl3anc 1323 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)) ∈ 𝐾)
106 csbeq1 3517 . . . . . . . 8 (𝑏 = 𝑒𝑏 / 𝑖𝑋 = 𝑒 / 𝑖𝑋)
107 oveq1 6611 . . . . . . . 8 (𝑏 = 𝑒 → (𝑏(𝐽𝑀)𝐿) = (𝑒(𝐽𝑀)𝐿))
108106, 107oveq12d 6622 . . . . . . 7 (𝑏 = 𝑒 → (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)) = (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)))
10940, 62, 67, 71, 91, 93, 95, 105, 108gsumunsn 18280 . . . . . 6 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
110109adantr 481 . . . . 5 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
111 oveq1 6611 . . . . . 6 ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) → ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
112111adantl 482 . . . . 5 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
113 elun 3731 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝑑 ∪ {𝑒}) ↔ (𝑏𝑑𝑏 ∈ {𝑒}))
114 velsn 4164 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑒} ↔ 𝑏 = 𝑒)
115114orbi2i 541 . . . . . . . . . . . . . 14 ((𝑏𝑑𝑏 ∈ {𝑒}) ↔ (𝑏𝑑𝑏 = 𝑒))
116113, 115bitri 264 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑑 ∪ {𝑒}) ↔ (𝑏𝑑𝑏 = 𝑒))
117 ifbi 4079 . . . . . . . . . . . . 13 ((𝑏 ∈ (𝑑 ∪ {𝑒}) ↔ (𝑏𝑑𝑏 = 𝑒)) → if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅)))
118116, 117ax-mp 5 . . . . . . . . . . . 12 if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅))
119 ringmnd 18477 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
12065, 119syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑅 ∈ Mnd)
1211203ad2ant1 1080 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ Mnd)
122 simp3 1061 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
123983ad2ant1 1080 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → ∀𝑖𝑁 𝑋𝐾)
124122, 123, 77syl2anc 692 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → 𝑏 / 𝑖𝑋𝐾)
125 elequ1 1994 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑒 → (𝑏𝑑𝑒𝑑))
126125biimpac 503 . . . . . . . . . . . . . . 15 ((𝑏𝑑𝑏 = 𝑒) → 𝑒𝑑)
12795, 126nsyl 135 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ¬ (𝑏𝑑𝑏 = 𝑒))
1281273ad2ant1 1080 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → ¬ (𝑏𝑑𝑏 = 𝑒))
12940, 41, 62mndifsplit 20361 . . . . . . . . . . . . 13 ((𝑅 ∈ Mnd ∧ 𝑏 / 𝑖𝑋𝐾 ∧ ¬ (𝑏𝑑𝑏 = 𝑒)) → if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))))
130121, 124, 128, 129syl3anc 1323 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if((𝑏𝑑𝑏 = 𝑒), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))))
131118, 130syl5eq 2667 . . . . . . . . . . 11 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))))
132106adantl 482 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑏 = 𝑒) → 𝑏 / 𝑖𝑋 = 𝑒 / 𝑖𝑋)
133132ifeq1da 4088 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅)) = if(𝑏 = 𝑒, 𝑒 / 𝑖𝑋, (0g𝑅)))
134 ovif2 6691 . . . . . . . . . . . . . . 15 (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) = if(𝑏 = 𝑒, (𝑒 / 𝑖𝑋 · (1r𝑅)), (𝑒 / 𝑖𝑋 · (0g𝑅)))
135 eqid 2621 . . . . . . . . . . . . . . . . . 18 (1r𝑅) = (1r𝑅)
13640, 89, 135ringridm 18493 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾) → (𝑒 / 𝑖𝑋 · (1r𝑅)) = 𝑒 / 𝑖𝑋)
13765, 100, 136syl2anc 692 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (1r𝑅)) = 𝑒 / 𝑖𝑋)
13840, 89, 41ringrz 18509 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾) → (𝑒 / 𝑖𝑋 · (0g𝑅)) = (0g𝑅))
13965, 100, 138syl2anc 692 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (0g𝑅)) = (0g𝑅))
140137, 139ifeq12d 4078 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, (𝑒 / 𝑖𝑋 · (1r𝑅)), (𝑒 / 𝑖𝑋 · (0g𝑅))) = if(𝑏 = 𝑒, 𝑒 / 𝑖𝑋, (0g𝑅)))
141134, 140syl5eq 2667 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) = if(𝑏 = 𝑒, 𝑒 / 𝑖𝑋, (0g𝑅)))
142133, 141eqtr4d 2658 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅)) = (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))))
143142oveq2d 6620 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))))
1441433ad2ant1 1080 . . . . . . . . . . 11 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)if(𝑏 = 𝑒, 𝑏 / 𝑖𝑋, (0g𝑅))) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))))
145131, 144eqtrd 2655 . . . . . . . . . 10 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)) = (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))))
146145ifeq1d 4076 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏)))
147146mpt2eq3dva 6672 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏))))
148147fveq2d 6152 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏)))))
14940, 41ring0cl 18490 . . . . . . . . . . 11 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐾)
15065, 149syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (0g𝑅) ∈ 𝐾)
1511503ad2ant1 1080 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (0g𝑅) ∈ 𝐾)
152124, 151ifcld 4103 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)) ∈ 𝐾)
15340, 135ringidcl 18489 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
15465, 153syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (1r𝑅) ∈ 𝐾)
155154, 150ifcld 4103 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)) ∈ 𝐾)
15640, 89ringcl 18482 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑒 / 𝑖𝑋𝐾 ∧ if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)) ∈ 𝐾) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) ∈ 𝐾)
15765, 100, 155, 156syl3anc 1323 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) ∈ 𝐾)
1581573ad2ant1 1080 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))) ∈ 𝐾)
15951adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑀:(𝑁 × 𝑁)⟶𝐾)
160159fovrnda 6758 . . . . . . . . 9 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑀𝑏) ∈ 𝐾)
1611603impb 1257 . . . . . . . 8 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑀𝑏) ∈ 𝐾)
16239, 40, 62, 63, 68, 152, 158, 161, 102mdetrlin2 20332 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅))(+g𝑅)(𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)))), (𝑎𝑀𝑏)))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏))))))
1631553ad2ant1 1080 . . . . . . . . . 10 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ 𝑎𝑁𝑏𝑁) → if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)) ∈ 𝐾)
16439, 40, 89, 63, 68, 163, 161, 100, 102mdetrsca2 20329 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏)))) = (𝑒 / 𝑖𝑋 · (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏))))))
16543adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → 𝑀𝐵)
16644, 39, 79, 45, 135, 41maducoeval 20364 . . . . . . . . . . 11 ((𝑀𝐵𝑒𝑁𝐿𝑁) → (𝑒(𝐽𝑀)𝐿) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏)))))
167165, 97, 102, 166syl3anc 1323 . . . . . . . . . 10 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒(𝐽𝑀)𝐿) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏)))))
168167oveq2d 6620 . . . . . . . . 9 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)) = (𝑒 / 𝑖𝑋 · (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 = 𝑒, (1r𝑅), (0g𝑅)), (𝑎𝑀𝑏))))))
169164, 168eqtr4d 2658 . . . . . . . 8 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏)))) = (𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿)))
170169oveq2d 6620 . . . . . . 7 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, (𝑒 / 𝑖𝑋 · if(𝑏 = 𝑒, (1r𝑅), (0g𝑅))), (𝑎𝑀𝑏))))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))))
171148, 162, 1703eqtrrd 2660 . . . . . 6 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
172171adantr 481 . . . . 5 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))(+g𝑅)(𝑒 / 𝑖𝑋 · (𝑒(𝐽𝑀)𝐿))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
173110, 112, 1723eqtrd 2659 . . . 4 (((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) ∧ (𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
174173ex 450 . . 3 ((𝜑 ∧ (𝑑𝑁𝑒 ∈ (𝑁𝑑))) → ((𝑅 Σg (𝑏𝑑 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑑, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))) → (𝑅 Σg (𝑏 ∈ (𝑑 ∪ {𝑒}) ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏 ∈ (𝑑 ∪ {𝑒}), 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))))
1758, 16, 24, 32, 61, 174, 48findcard2d 8146 . 2 (𝜑 → (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))))
176 nfcv 2761 . . . 4 𝑏(𝑋 · (𝑖(𝐽𝑀)𝐿))
177 nfcsb1v 3530 . . . . 5 𝑖𝑏 / 𝑖𝑋
178 nfcv 2761 . . . . 5 𝑖 ·
179 nfcv 2761 . . . . 5 𝑖(𝑏(𝐽𝑀)𝐿)
180177, 178, 179nfov 6630 . . . 4 𝑖(𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))
181 csbeq1a 3523 . . . . 5 (𝑖 = 𝑏𝑋 = 𝑏 / 𝑖𝑋)
182 oveq1 6611 . . . . 5 (𝑖 = 𝑏 → (𝑖(𝐽𝑀)𝐿) = (𝑏(𝐽𝑀)𝐿))
183181, 182oveq12d 6622 . . . 4 (𝑖 = 𝑏 → (𝑋 · (𝑖(𝐽𝑀)𝐿)) = (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))
184176, 180, 183cbvmpt 4709 . . 3 (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿))) = (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿)))
185184oveq2i 6615 . 2 (𝑅 Σg (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿)))) = (𝑅 Σg (𝑏𝑁 ↦ (𝑏 / 𝑖𝑋 · (𝑏(𝐽𝑀)𝐿))))
186 nfcv 2761 . . . . 5 𝑎if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))
187 nfcv 2761 . . . . 5 𝑏if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))
188 nfcv 2761 . . . . 5 𝑗if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏))
189 nfv 1840 . . . . . 6 𝑖 𝑎 = 𝐿
190 nfcv 2761 . . . . . 6 𝑖(𝑎𝑀𝑏)
191189, 177, 190nfif 4087 . . . . 5 𝑖if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏))
192 eqeq1 2625 . . . . . . 7 (𝑗 = 𝑎 → (𝑗 = 𝐿𝑎 = 𝐿))
193192adantr 481 . . . . . 6 ((𝑗 = 𝑎𝑖 = 𝑏) → (𝑗 = 𝐿𝑎 = 𝐿))
194181adantl 482 . . . . . 6 ((𝑗 = 𝑎𝑖 = 𝑏) → 𝑋 = 𝑏 / 𝑖𝑋)
195 oveq12 6613 . . . . . 6 ((𝑗 = 𝑎𝑖 = 𝑏) → (𝑗𝑀𝑖) = (𝑎𝑀𝑏))
196193, 194, 195ifbieq12d 4085 . . . . 5 ((𝑗 = 𝑎𝑖 = 𝑏) → if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)) = if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏)))
197186, 187, 188, 191, 196cbvmpt2 6687 . . . 4 (𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏)))
198 iftrue 4064 . . . . . . . 8 (𝑏𝑁 → if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)) = 𝑏 / 𝑖𝑋)
199198eqcomd 2627 . . . . . . 7 (𝑏𝑁𝑏 / 𝑖𝑋 = if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)))
200199adantl 482 . . . . . 6 ((𝑎𝑁𝑏𝑁) → 𝑏 / 𝑖𝑋 = if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)))
201200ifeq1d 4076 . . . . 5 ((𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏)) = if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
202201mpt2eq3ia 6673 . . . 4 (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, 𝑏 / 𝑖𝑋, (𝑎𝑀𝑏))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
203197, 202eqtri 2643 . . 3 (𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏)))
204203fveq2i 6151 . 2 (𝐷‘(𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐿, if(𝑏𝑁, 𝑏 / 𝑖𝑋, (0g𝑅)), (𝑎𝑀𝑏))))
205175, 185, 2043eqtr4g 2680 1 (𝜑 → (𝑅 Σg (𝑖𝑁 ↦ (𝑋 · (𝑖(𝐽𝑀)𝐿)))) = (𝐷‘(𝑗𝑁, 𝑖𝑁 ↦ if(𝑗 = 𝐿, 𝑋, (𝑗𝑀𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  csb 3514  cdif 3552  cun 3553  wss 3555  c0 3891  ifcif 4058  {csn 4148  cmpt 4673   × cxp 5072  wf 5843  cfv 5847  (class class class)co 6604  cmpt2 6606  𝑚 cmap 7802  Fincfn 7899  Basecbs 15781  +gcplusg 15862  .rcmulr 15863  0gc0g 16021   Σg cgsu 16022  Mndcmnd 17215  CMndccmn 18114  1rcur 18422  Ringcrg 18468  CRingccrg 18469   Mat cmat 20132   maDet cmdat 20309   maAdju cmadu 20357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-xor 1462  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-ot 4157  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-xnn0 11308  df-z 11322  df-dec 11438  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-word 13238  df-lsw 13239  df-concat 13240  df-s1 13241  df-substr 13242  df-splice 13243  df-reverse 13244  df-s2 13530  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-0g 16023  df-gsum 16024  df-prds 16029  df-pws 16031  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-mulg 17462  df-subg 17512  df-ghm 17579  df-gim 17622  df-cntz 17671  df-oppg 17697  df-symg 17719  df-pmtr 17783  df-psgn 17832  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-rnghom 18636  df-drng 18670  df-subrg 18699  df-sra 19091  df-rgmod 19092  df-cnfld 19666  df-zring 19738  df-zrh 19771  df-dsmm 19995  df-frlm 20010  df-mat 20133  df-mdet 20310  df-madu 20359
This theorem is referenced by:  madurid  20369  mdetlap1  29674
  Copyright terms: Public domain W3C validator