MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamuass Structured version   Visualization version   GIF version

Theorem mamuass 21010
Description: Matrix multiplication is associative, see also statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mamucl.b 𝐵 = (Base‘𝑅)
mamucl.r (𝜑𝑅 ∈ Ring)
mamuass.m (𝜑𝑀 ∈ Fin)
mamuass.n (𝜑𝑁 ∈ Fin)
mamuass.o (𝜑𝑂 ∈ Fin)
mamuass.p (𝜑𝑃 ∈ Fin)
mamuass.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamuass.y (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑂)))
mamuass.z (𝜑𝑍 ∈ (𝐵m (𝑂 × 𝑃)))
mamuass.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamuass.g 𝐺 = (𝑅 maMul ⟨𝑀, 𝑂, 𝑃⟩)
mamuass.h 𝐻 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamuass.i 𝐼 = (𝑅 maMul ⟨𝑁, 𝑂, 𝑃⟩)
Assertion
Ref Expression
mamuass (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)))

Proof of Theorem mamuass
Dummy variables 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.b . . . . . 6 𝐵 = (Base‘𝑅)
2 mamucl.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
3 ringcmn 19330 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
42, 3syl 17 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
54adantr 483 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑅 ∈ CMnd)
6 mamuass.o . . . . . . 7 (𝜑𝑂 ∈ Fin)
76adantr 483 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑂 ∈ Fin)
8 mamuass.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
98adantr 483 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑁 ∈ Fin)
102ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑅 ∈ Ring)
11 mamuass.x . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
12 elmapi 8427 . . . . . . . . . . 11 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
1311, 12syl 17 . . . . . . . . . 10 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
1413ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
15 simplrl 775 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑖𝑀)
16 simpr 487 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑙𝑁)
1714, 15, 16fovrnd 7319 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑖𝑋𝑙) ∈ 𝐵)
1817adantrl 714 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (𝑖𝑋𝑙) ∈ 𝐵)
19 mamuass.y . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑂)))
20 elmapi 8427 . . . . . . . . . . 11 (𝑌 ∈ (𝐵m (𝑁 × 𝑂)) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
2119, 20syl 17 . . . . . . . . . 10 (𝜑𝑌:(𝑁 × 𝑂)⟶𝐵)
2221ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
23 simprr 771 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑙𝑁)
24 simprl 769 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑗𝑂)
2522, 23, 24fovrnd 7319 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (𝑙𝑌𝑗) ∈ 𝐵)
26 mamuass.z . . . . . . . . . . . 12 (𝜑𝑍 ∈ (𝐵m (𝑂 × 𝑃)))
27 elmapi 8427 . . . . . . . . . . . 12 (𝑍 ∈ (𝐵m (𝑂 × 𝑃)) → 𝑍:(𝑂 × 𝑃)⟶𝐵)
2826, 27syl 17 . . . . . . . . . . 11 (𝜑𝑍:(𝑂 × 𝑃)⟶𝐵)
2928ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑍:(𝑂 × 𝑃)⟶𝐵)
30 simpr 487 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑗𝑂)
31 simplrr 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑘𝑃)
3229, 30, 31fovrnd 7319 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑗𝑍𝑘) ∈ 𝐵)
3332adantrr 715 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (𝑗𝑍𝑘) ∈ 𝐵)
34 eqid 2821 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
351, 34ringcl 19310 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑙𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
3610, 25, 33, 35syl3anc 1367 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
371, 34ringcl 19310 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑙) ∈ 𝐵 ∧ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵) → ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) ∈ 𝐵)
3810, 18, 36, 37syl3anc 1367 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) ∈ 𝐵)
391, 5, 7, 9, 38gsumcom3fi 19098 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑗𝑂 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))) = (𝑅 Σg (𝑙𝑁 ↦ (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))))
40 mamuass.f . . . . . . . . . 10 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
412ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑅 ∈ Ring)
42 mamuass.m . . . . . . . . . . 11 (𝜑𝑀 ∈ Fin)
4342ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑀 ∈ Fin)
448ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑁 ∈ Fin)
456ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑂 ∈ Fin)
4611ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
4719ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑌 ∈ (𝐵m (𝑁 × 𝑂)))
48 simplrl 775 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑖𝑀)
4940, 1, 34, 41, 43, 44, 45, 46, 47, 48, 30mamufv 20997 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑖(𝑋𝐹𝑌)𝑗) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)))))
5049oveq1d 7170 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)) = ((𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))))(.r𝑅)(𝑗𝑍𝑘)))
51 eqid 2821 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
52 eqid 2821 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
531, 34ringcl 19310 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑙) ∈ 𝐵 ∧ (𝑙𝑌𝑗) ∈ 𝐵) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ 𝐵)
5410, 18, 25, 53syl3anc 1367 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ 𝐵)
5554anassrs 470 . . . . . . . . 9 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ 𝐵)
56 eqid 2821 . . . . . . . . . 10 (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))) = (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)))
57 ovexd 7190 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ V)
58 fvexd 6684 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (0g𝑅) ∈ V)
5956, 44, 57, 58fsuppmptdm 8843 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))) finSupp (0g𝑅))
601, 51, 52, 34, 41, 44, 32, 55, 59gsummulc1 19355 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑅 Σg (𝑙𝑁 ↦ (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)))) = ((𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))))(.r𝑅)(𝑗𝑍𝑘)))
611, 34ringass 19313 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑙) ∈ 𝐵 ∧ (𝑙𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
6210, 18, 25, 33, 61syl13anc 1368 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
6362anassrs 470 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) ∧ 𝑙𝑁) → (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
6463mpteq2dva 5160 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑙𝑁 ↦ (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘))) = (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6564oveq2d 7171 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑅 Σg (𝑙𝑁 ↦ (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
6650, 60, 653eqtr2d 2862 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
6766mpteq2dva 5160 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑂 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))))
6867oveq2d 7171 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑗𝑂 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))))
69 mamuass.i . . . . . . . . . 10 𝐼 = (𝑅 maMul ⟨𝑁, 𝑂, 𝑃⟩)
702ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑅 ∈ Ring)
718ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑁 ∈ Fin)
726ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑂 ∈ Fin)
73 mamuass.p . . . . . . . . . . 11 (𝜑𝑃 ∈ Fin)
7473ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑃 ∈ Fin)
7519ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑌 ∈ (𝐵m (𝑁 × 𝑂)))
7626ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑍 ∈ (𝐵m (𝑂 × 𝑃)))
77 simplrr 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑘𝑃)
7869, 1, 34, 70, 71, 72, 74, 75, 76, 16, 77mamufv 20997 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑙(𝑌𝐼𝑍)𝑘) = (𝑅 Σg (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
7978oveq2d 7171 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)(𝑅 Σg (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
8036anass1rs 653 . . . . . . . . 9 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) ∧ 𝑗𝑂) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
81 eqid 2821 . . . . . . . . . 10 (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))
82 ovexd 7190 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) ∧ 𝑗𝑂) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ V)
83 fvexd 6684 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (0g𝑅) ∈ V)
8481, 72, 82, 83fsuppmptdm 8843 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) finSupp (0g𝑅))
851, 51, 52, 34, 70, 72, 17, 80, 84gsummulc2 19356 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))) = ((𝑖𝑋𝑙)(.r𝑅)(𝑅 Σg (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
8679, 85eqtr4d 2859 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)) = (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
8786mpteq2dva 5160 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘))) = (𝑙𝑁 ↦ (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))))
8887oveq2d 7171 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)))) = (𝑅 Σg (𝑙𝑁 ↦ (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))))
8939, 68, 883eqtr4d 2866 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)))))
90 mamuass.g . . . . 5 𝐺 = (𝑅 maMul ⟨𝑀, 𝑂, 𝑃⟩)
912adantr 483 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑅 ∈ Ring)
9242adantr 483 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑀 ∈ Fin)
9373adantr 483 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑃 ∈ Fin)
941, 2, 40, 42, 8, 6, 11, 19mamucl 21009 . . . . . 6 (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵m (𝑀 × 𝑂)))
9594adantr 483 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑋𝐹𝑌) ∈ (𝐵m (𝑀 × 𝑂)))
9626adantr 483 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑍 ∈ (𝐵m (𝑂 × 𝑃)))
97 simprl 769 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑖𝑀)
98 simprr 771 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑘𝑃)
9990, 1, 34, 91, 92, 7, 93, 95, 96, 97, 98mamufv 20997 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑅 Σg (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
100 mamuass.h . . . . 5 𝐻 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
10111adantr 483 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
1021, 2, 69, 8, 6, 73, 19, 26mamucl 21009 . . . . . 6 (𝜑 → (𝑌𝐼𝑍) ∈ (𝐵m (𝑁 × 𝑃)))
103102adantr 483 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑌𝐼𝑍) ∈ (𝐵m (𝑁 × 𝑃)))
104100, 1, 34, 91, 92, 9, 93, 101, 103, 97, 98mamufv 20997 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)))))
10589, 99, 1043eqtr4d 2866 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘))
106105ralrimivva 3191 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘))
1071, 2, 90, 42, 6, 73, 94, 26mamucl 21009 . . . 4 (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) ∈ (𝐵m (𝑀 × 𝑃)))
108 elmapi 8427 . . . 4 (((𝑋𝐹𝑌)𝐺𝑍) ∈ (𝐵m (𝑀 × 𝑃)) → ((𝑋𝐹𝑌)𝐺𝑍):(𝑀 × 𝑃)⟶𝐵)
109 ffn 6513 . . . 4 (((𝑋𝐹𝑌)𝐺𝑍):(𝑀 × 𝑃)⟶𝐵 → ((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃))
110107, 108, 1093syl 18 . . 3 (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃))
1111, 2, 100, 42, 8, 73, 11, 102mamucl 21009 . . . 4 (𝜑 → (𝑋𝐻(𝑌𝐼𝑍)) ∈ (𝐵m (𝑀 × 𝑃)))
112 elmapi 8427 . . . 4 ((𝑋𝐻(𝑌𝐼𝑍)) ∈ (𝐵m (𝑀 × 𝑃)) → (𝑋𝐻(𝑌𝐼𝑍)):(𝑀 × 𝑃)⟶𝐵)
113 ffn 6513 . . . 4 ((𝑋𝐻(𝑌𝐼𝑍)):(𝑀 × 𝑃)⟶𝐵 → (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃))
114111, 112, 1133syl 18 . . 3 (𝜑 → (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃))
115 eqfnov2 7280 . . 3 ((((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃) ∧ (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃)) → (((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)) ↔ ∀𝑖𝑀𝑘𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘)))
116110, 114, 115syl2anc 586 . 2 (𝜑 → (((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)) ↔ ∀𝑖𝑀𝑘𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘)))
117106, 116mpbird 259 1 (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  cotp 4574  cmpt 5145   × cxp 5552   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  m cmap 8405  Fincfn 8508  Basecbs 16482  +gcplusg 16564  .rcmulr 16565  0gc0g 16712   Σg cgsu 16713  CMndccmn 18905  Ringcrg 19296   maMul cmmul 20993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-ot 4575  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-fzo 13033  df-seq 13369  df-hash 13690  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-0g 16714  df-gsum 16715  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-submnd 17956  df-grp 18105  df-minusg 18106  df-mulg 18224  df-ghm 18355  df-cntz 18446  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-mamu 20994
This theorem is referenced by:  matring  21051
  Copyright terms: Public domain W3C validator