MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamuass Structured version   Visualization version   GIF version

Theorem mamuass 19964
Description: Matrix multiplication is associative, see also statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mamucl.b 𝐵 = (Base‘𝑅)
mamucl.r (𝜑𝑅 ∈ Ring)
mamuass.m (𝜑𝑀 ∈ Fin)
mamuass.n (𝜑𝑁 ∈ Fin)
mamuass.o (𝜑𝑂 ∈ Fin)
mamuass.p (𝜑𝑃 ∈ Fin)
mamuass.x (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
mamuass.y (𝜑𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
mamuass.z (𝜑𝑍 ∈ (𝐵𝑚 (𝑂 × 𝑃)))
mamuass.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamuass.g 𝐺 = (𝑅 maMul ⟨𝑀, 𝑂, 𝑃⟩)
mamuass.h 𝐻 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamuass.i 𝐼 = (𝑅 maMul ⟨𝑁, 𝑂, 𝑃⟩)
Assertion
Ref Expression
mamuass (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)))

Proof of Theorem mamuass
Dummy variables 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.b . . . . . 6 𝐵 = (Base‘𝑅)
2 mamucl.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
3 ringcmn 18345 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
42, 3syl 17 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
54adantr 479 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑅 ∈ CMnd)
6 mamuass.o . . . . . . 7 (𝜑𝑂 ∈ Fin)
76adantr 479 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑂 ∈ Fin)
8 mamuass.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
98adantr 479 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑁 ∈ Fin)
102ad2antrr 757 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑅 ∈ Ring)
11 mamuass.x . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
12 elmapi 7737 . . . . . . . . . . 11 (𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
1311, 12syl 17 . . . . . . . . . 10 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
1413ad2antrr 757 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
15 simplrl 795 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑖𝑀)
16 simpr 475 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑙𝑁)
1714, 15, 16fovrnd 6676 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑖𝑋𝑙) ∈ 𝐵)
1817adantrl 747 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (𝑖𝑋𝑙) ∈ 𝐵)
19 mamuass.y . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
20 elmapi 7737 . . . . . . . . . . 11 (𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
2119, 20syl 17 . . . . . . . . . 10 (𝜑𝑌:(𝑁 × 𝑂)⟶𝐵)
2221ad2antrr 757 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
23 simprr 791 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑙𝑁)
24 simprl 789 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑗𝑂)
2522, 23, 24fovrnd 6676 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (𝑙𝑌𝑗) ∈ 𝐵)
26 mamuass.z . . . . . . . . . . . 12 (𝜑𝑍 ∈ (𝐵𝑚 (𝑂 × 𝑃)))
27 elmapi 7737 . . . . . . . . . . . 12 (𝑍 ∈ (𝐵𝑚 (𝑂 × 𝑃)) → 𝑍:(𝑂 × 𝑃)⟶𝐵)
2826, 27syl 17 . . . . . . . . . . 11 (𝜑𝑍:(𝑂 × 𝑃)⟶𝐵)
2928ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑍:(𝑂 × 𝑃)⟶𝐵)
30 simpr 475 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑗𝑂)
31 simplrr 796 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑘𝑃)
3229, 30, 31fovrnd 6676 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑗𝑍𝑘) ∈ 𝐵)
3332adantrr 748 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (𝑗𝑍𝑘) ∈ 𝐵)
34 eqid 2604 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
351, 34ringcl 18325 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑙𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
3610, 25, 33, 35syl3anc 1317 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
371, 34ringcl 18325 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑙) ∈ 𝐵 ∧ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵) → ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) ∈ 𝐵)
3810, 18, 36, 37syl3anc 1317 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) ∈ 𝐵)
391, 5, 7, 9, 38gsumcom3fi 19962 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑗𝑂 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))) = (𝑅 Σg (𝑙𝑁 ↦ (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))))
40 mamuass.f . . . . . . . . . 10 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
412ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑅 ∈ Ring)
42 mamuass.m . . . . . . . . . . 11 (𝜑𝑀 ∈ Fin)
4342ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑀 ∈ Fin)
448ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑁 ∈ Fin)
456ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑂 ∈ Fin)
4611ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
4719ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
48 simplrl 795 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑖𝑀)
4940, 1, 34, 41, 43, 44, 45, 46, 47, 48, 30mamufv 19949 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑖(𝑋𝐹𝑌)𝑗) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)))))
5049oveq1d 6537 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)) = ((𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))))(.r𝑅)(𝑗𝑍𝑘)))
51 eqid 2604 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
52 eqid 2604 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
531, 34ringcl 18325 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑙) ∈ 𝐵 ∧ (𝑙𝑌𝑗) ∈ 𝐵) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ 𝐵)
5410, 18, 25, 53syl3anc 1317 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ 𝐵)
5554anassrs 677 . . . . . . . . 9 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ 𝐵)
56 eqid 2604 . . . . . . . . . 10 (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))) = (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)))
57 ovex 6550 . . . . . . . . . . 11 ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ V
5857a1i 11 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ V)
59 fvex 6093 . . . . . . . . . . 11 (0g𝑅) ∈ V
6059a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (0g𝑅) ∈ V)
6156, 44, 58, 60fsuppmptdm 8141 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))) finSupp (0g𝑅))
621, 51, 52, 34, 41, 44, 32, 55, 61gsummulc1 18370 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑅 Σg (𝑙𝑁 ↦ (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)))) = ((𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))))(.r𝑅)(𝑗𝑍𝑘)))
631, 34ringass 18328 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑙) ∈ 𝐵 ∧ (𝑙𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
6410, 18, 25, 33, 63syl13anc 1319 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
6564anassrs 677 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) ∧ 𝑙𝑁) → (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
6665mpteq2dva 4661 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑙𝑁 ↦ (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘))) = (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6766oveq2d 6538 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑅 Σg (𝑙𝑁 ↦ (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
6850, 62, 673eqtr2d 2644 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
6968mpteq2dva 4661 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑂 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))))
7069oveq2d 6538 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑗𝑂 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))))
71 mamuass.i . . . . . . . . . 10 𝐼 = (𝑅 maMul ⟨𝑁, 𝑂, 𝑃⟩)
722ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑅 ∈ Ring)
738ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑁 ∈ Fin)
746ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑂 ∈ Fin)
75 mamuass.p . . . . . . . . . . 11 (𝜑𝑃 ∈ Fin)
7675ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑃 ∈ Fin)
7719ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
7826ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑍 ∈ (𝐵𝑚 (𝑂 × 𝑃)))
79 simplrr 796 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑘𝑃)
8071, 1, 34, 72, 73, 74, 76, 77, 78, 16, 79mamufv 19949 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑙(𝑌𝐼𝑍)𝑘) = (𝑅 Σg (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
8180oveq2d 6538 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)(𝑅 Σg (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
8236anass1rs 844 . . . . . . . . 9 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) ∧ 𝑗𝑂) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
83 eqid 2604 . . . . . . . . . 10 (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))
84 ovex 6550 . . . . . . . . . . 11 ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ V
8584a1i 11 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) ∧ 𝑗𝑂) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ V)
8659a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (0g𝑅) ∈ V)
8783, 74, 85, 86fsuppmptdm 8141 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) finSupp (0g𝑅))
881, 51, 52, 34, 72, 74, 17, 82, 87gsummulc2 18371 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))) = ((𝑖𝑋𝑙)(.r𝑅)(𝑅 Σg (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
8981, 88eqtr4d 2641 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)) = (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
9089mpteq2dva 4661 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘))) = (𝑙𝑁 ↦ (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))))
9190oveq2d 6538 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)))) = (𝑅 Σg (𝑙𝑁 ↦ (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))))
9239, 70, 913eqtr4d 2648 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)))))
93 mamuass.g . . . . 5 𝐺 = (𝑅 maMul ⟨𝑀, 𝑂, 𝑃⟩)
942adantr 479 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑅 ∈ Ring)
9542adantr 479 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑀 ∈ Fin)
9675adantr 479 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑃 ∈ Fin)
971, 2, 40, 42, 8, 6, 11, 19mamucl 19963 . . . . . 6 (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
9897adantr 479 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑋𝐹𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
9926adantr 479 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑍 ∈ (𝐵𝑚 (𝑂 × 𝑃)))
100 simprl 789 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑖𝑀)
101 simprr 791 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑘𝑃)
10293, 1, 34, 94, 95, 7, 96, 98, 99, 100, 101mamufv 19949 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑅 Σg (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
103 mamuass.h . . . . 5 𝐻 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
10411adantr 479 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
1051, 2, 71, 8, 6, 75, 19, 26mamucl 19963 . . . . . 6 (𝜑 → (𝑌𝐼𝑍) ∈ (𝐵𝑚 (𝑁 × 𝑃)))
106105adantr 479 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑌𝐼𝑍) ∈ (𝐵𝑚 (𝑁 × 𝑃)))
107103, 1, 34, 94, 95, 9, 96, 104, 106, 100, 101mamufv 19949 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)))))
10892, 102, 1073eqtr4d 2648 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘))
109108ralrimivva 2948 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘))
1101, 2, 93, 42, 6, 75, 97, 26mamucl 19963 . . . 4 (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑃)))
111 elmapi 7737 . . . 4 (((𝑋𝐹𝑌)𝐺𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑃)) → ((𝑋𝐹𝑌)𝐺𝑍):(𝑀 × 𝑃)⟶𝐵)
112 ffn 5939 . . . 4 (((𝑋𝐹𝑌)𝐺𝑍):(𝑀 × 𝑃)⟶𝐵 → ((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃))
113110, 111, 1123syl 18 . . 3 (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃))
1141, 2, 103, 42, 8, 75, 11, 105mamucl 19963 . . . 4 (𝜑 → (𝑋𝐻(𝑌𝐼𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑃)))
115 elmapi 7737 . . . 4 ((𝑋𝐻(𝑌𝐼𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑃)) → (𝑋𝐻(𝑌𝐼𝑍)):(𝑀 × 𝑃)⟶𝐵)
116 ffn 5939 . . . 4 ((𝑋𝐻(𝑌𝐼𝑍)):(𝑀 × 𝑃)⟶𝐵 → (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃))
117114, 115, 1163syl 18 . . 3 (𝜑 → (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃))
118 eqfnov2 6638 . . 3 ((((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃) ∧ (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃)) → (((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)) ↔ ∀𝑖𝑀𝑘𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘)))
119113, 117, 118syl2anc 690 . 2 (𝜑 → (((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)) ↔ ∀𝑖𝑀𝑘𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘)))
120109, 119mpbird 245 1 (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1975  wral 2890  Vcvv 3167  cotp 4127  cmpt 4632   × cxp 5021   Fn wfn 5780  wf 5781  cfv 5785  (class class class)co 6522  𝑚 cmap 7716  Fincfn 7813  Basecbs 15636  +gcplusg 15709  .rcmulr 15710  0gc0g 15864   Σg cgsu 15865  CMndccmn 17957  Ringcrg 18311   maMul cmmul 19945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-inf2 8393  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-ot 4128  df-uni 4362  df-int 4400  df-iun 4446  df-iin 4447  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-se 4983  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-isom 5794  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-of 6767  df-om 6930  df-1st 7031  df-2nd 7032  df-supp 7155  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-1o 7419  df-oadd 7423  df-er 7601  df-map 7718  df-en 7814  df-dom 7815  df-sdom 7816  df-fin 7817  df-fsupp 8131  df-oi 8270  df-card 8620  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-nn 10863  df-2 10921  df-n0 11135  df-z 11206  df-uz 11515  df-fz 12148  df-fzo 12285  df-seq 12614  df-hash 12930  df-ndx 15639  df-slot 15640  df-base 15641  df-sets 15642  df-ress 15643  df-plusg 15722  df-0g 15866  df-gsum 15867  df-mre 16010  df-mrc 16011  df-acs 16013  df-mgm 17006  df-sgrp 17048  df-mnd 17059  df-mhm 17099  df-submnd 17100  df-grp 17189  df-minusg 17190  df-mulg 17305  df-ghm 17422  df-cntz 17514  df-cmn 17959  df-abl 17960  df-mgp 18254  df-ur 18266  df-ring 18313  df-mamu 19946
This theorem is referenced by:  matring  20005
  Copyright terms: Public domain W3C validator