MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamudm Structured version   Visualization version   GIF version

Theorem mamudm 19960
Description: The domain of the matrix multiplication function. (Contributed by AV, 10-Feb-2019.)
Hypotheses
Ref Expression
mamudm.e 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁))
mamudm.b 𝐵 = (Base‘𝐸)
mamudm.f 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃))
mamudm.c 𝐶 = (Base‘𝐹)
mamudm.m × = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
Assertion
Ref Expression
mamudm ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))

Proof of Theorem mamudm
Dummy variables 𝑖 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamudm.m . . . 4 × = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
2 eqid 2609 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2609 . . . 4 (.r𝑅) = (.r𝑅)
4 simpl 471 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑅𝑉)
5 simpr1 1059 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑀 ∈ Fin)
6 simpr2 1060 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑁 ∈ Fin)
7 simpr3 1061 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑃 ∈ Fin)
81, 2, 3, 4, 5, 6, 7mamufval 19957 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → × = (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))))
98dmeqd 5234 . 2 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = dom (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))))
10 mpt2exga 7112 . . . . . . 7 ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
11103adant2 1072 . . . . . 6 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
1211adantl 480 . . . . 5 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
1312a1d 25 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑀 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑃))) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V))
1413ralrimivv 2952 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ∀𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑀 × 𝑁))∀𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑃))(𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
15 eqid 2609 . . . 4 (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))) = (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))))
1615dmmpt2ga 7108 . . 3 (∀𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑀 × 𝑁))∀𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑃))(𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V → dom (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))) = (((Base‘𝑅) ↑𝑚 (𝑀 × 𝑁)) × ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑃))))
1714, 16syl 17 . 2 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))) = (((Base‘𝑅) ↑𝑚 (𝑀 × 𝑁)) × ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑃))))
18 xpfi 8093 . . . . . 6 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑀 × 𝑁) ∈ Fin)
19183adant3 1073 . . . . 5 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑀 × 𝑁) ∈ Fin)
20 mamudm.e . . . . . 6 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁))
2120, 2frlmfibas 19871 . . . . 5 ((𝑅𝑉 ∧ (𝑀 × 𝑁) ∈ Fin) → ((Base‘𝑅) ↑𝑚 (𝑀 × 𝑁)) = (Base‘𝐸))
2219, 21sylan2 489 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑𝑚 (𝑀 × 𝑁)) = (Base‘𝐸))
23 mamudm.b . . . 4 𝐵 = (Base‘𝐸)
2422, 23syl6eqr 2661 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑𝑚 (𝑀 × 𝑁)) = 𝐵)
25 xpfi 8093 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑁 × 𝑃) ∈ Fin)
26253adant1 1071 . . . . 5 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑁 × 𝑃) ∈ Fin)
27 mamudm.f . . . . . 6 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃))
2827, 2frlmfibas 19871 . . . . 5 ((𝑅𝑉 ∧ (𝑁 × 𝑃) ∈ Fin) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑃)) = (Base‘𝐹))
2926, 28sylan2 489 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑃)) = (Base‘𝐹))
30 mamudm.c . . . 4 𝐶 = (Base‘𝐹)
3129, 30syl6eqr 2661 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑃)) = 𝐶)
3224, 31xpeq12d 5053 . 2 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → (((Base‘𝑅) ↑𝑚 (𝑀 × 𝑁)) × ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑃))) = (𝐵 × 𝐶))
339, 17, 323eqtrd 2647 1 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2895  Vcvv 3172  cotp 4132  cmpt 4637   × cxp 5025  dom cdm 5027  cfv 5789  (class class class)co 6526  cmpt2 6528  𝑚 cmap 7721  Fincfn 7818  Basecbs 15643  .rcmulr 15717   Σg cgsu 15872   freeLMod cfrlm 19856   maMul cmmul 19955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-ot 4133  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-sup 8208  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-5 10931  df-6 10932  df-7 10933  df-8 10934  df-9 10935  df-n0 11142  df-z 11213  df-dec 11328  df-uz 11522  df-fz 12155  df-struct 15645  df-ndx 15646  df-slot 15647  df-base 15648  df-sets 15649  df-ress 15650  df-plusg 15729  df-mulr 15730  df-sca 15732  df-vsca 15733  df-ip 15734  df-tset 15735  df-ple 15736  df-ds 15739  df-hom 15741  df-cco 15742  df-0g 15873  df-prds 15879  df-pws 15881  df-sra 18941  df-rgmod 18942  df-dsmm 19842  df-frlm 19857  df-mamu 19956
This theorem is referenced by:  mamufacex  19961
  Copyright terms: Public domain W3C validator