MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamufacex Structured version   Visualization version   GIF version

Theorem mamufacex 21002
Description: Every solution of the equation 𝐴𝑋 = 𝐵 for matrices 𝐴 and 𝐵 is a matrix. (Contributed by AV, 10-Feb-2019.)
Hypotheses
Ref Expression
mamudm.e 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁))
mamudm.b 𝐵 = (Base‘𝐸)
mamudm.f 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃))
mamudm.c 𝐶 = (Base‘𝐹)
mamudm.m × = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamufacex.g 𝐺 = (𝑅 freeLMod (𝑀 × 𝑃))
mamufacex.d 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
mamufacex (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑋 × 𝑍) = 𝑌𝑍𝐶))

Proof of Theorem mamufacex
StepHypRef Expression
1 2a1 28 . 2 (𝑍𝐶 → (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑋 × 𝑍) = 𝑌𝑍𝐶)))
2 mamudm.e . . . . . . . 8 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁))
3 mamudm.b . . . . . . . 8 𝐵 = (Base‘𝐸)
4 mamudm.f . . . . . . . 8 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃))
5 mamudm.c . . . . . . . 8 𝐶 = (Base‘𝐹)
6 mamudm.m . . . . . . . 8 × = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
72, 3, 4, 5, 6mamudm 21001 . . . . . . 7 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))
87adantlr 713 . . . . . 6 (((𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))
983adant1 1126 . . . . 5 (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))
10 simpl 485 . . . . . 6 ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → ¬ 𝑍𝐶)
1110intnand 491 . . . . 5 ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → ¬ (𝑋𝐵𝑍𝐶))
12 ndmovg 7333 . . . . 5 ((dom × = (𝐵 × 𝐶) ∧ ¬ (𝑋𝐵𝑍𝐶)) → (𝑋 × 𝑍) = ∅)
139, 11, 12syl2an2 684 . . . 4 ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → (𝑋 × 𝑍) = ∅)
14 eqeq1 2827 . . . . . 6 ((𝑋 × 𝑍) = ∅ → ((𝑋 × 𝑍) = 𝑌 ↔ ∅ = 𝑌))
15 xpfi 8791 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑀 × 𝑃) ∈ Fin)
16153adant2 1127 . . . . . . . . . . . . . . 15 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑀 × 𝑃) ∈ Fin)
17 xpnz 6018 . . . . . . . . . . . . . . . 16 ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ↔ (𝑀 × 𝑃) ≠ ∅)
1817biimpi 218 . . . . . . . . . . . . . . 15 ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) → (𝑀 × 𝑃) ≠ ∅)
19 mamufacex.g . . . . . . . . . . . . . . . 16 𝐺 = (𝑅 freeLMod (𝑀 × 𝑃))
20 eqid 2823 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
21 mamufacex.d . . . . . . . . . . . . . . . 16 𝐷 = (Base‘𝐺)
2219, 20, 21elfrlmbasn0 20909 . . . . . . . . . . . . . . 15 (((𝑀 × 𝑃) ∈ Fin ∧ (𝑀 × 𝑃) ≠ ∅) → (𝑌𝐷𝑌 ≠ ∅))
2316, 18, 22syl2an 597 . . . . . . . . . . . . . 14 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) ∧ (𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅)) → (𝑌𝐷𝑌 ≠ ∅))
2423ex 415 . . . . . . . . . . . . 13 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) → (𝑌𝐷𝑌 ≠ ∅)))
2524com13 88 . . . . . . . . . . . 12 (𝑌𝐷 → ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → 𝑌 ≠ ∅)))
2625adantl 484 . . . . . . . . . . 11 ((𝑅𝑉𝑌𝐷) → ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → 𝑌 ≠ ∅)))
27263imp21 1110 . . . . . . . . . 10 (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑌 ≠ ∅)
28 eqneqall 3029 . . . . . . . . . 10 (𝑌 = ∅ → (𝑌 ≠ ∅ → 𝑍𝐶))
2927, 28syl5com 31 . . . . . . . . 9 (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → (𝑌 = ∅ → 𝑍𝐶))
3029adantl 484 . . . . . . . 8 ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → (𝑌 = ∅ → 𝑍𝐶))
3130com12 32 . . . . . . 7 (𝑌 = ∅ → ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → 𝑍𝐶))
3231eqcoms 2831 . . . . . 6 (∅ = 𝑌 → ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → 𝑍𝐶))
3314, 32syl6bi 255 . . . . 5 ((𝑋 × 𝑍) = ∅ → ((𝑋 × 𝑍) = 𝑌 → ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → 𝑍𝐶)))
3433com23 86 . . . 4 ((𝑋 × 𝑍) = ∅ → ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → ((𝑋 × 𝑍) = 𝑌𝑍𝐶)))
3513, 34mpcom 38 . . 3 ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → ((𝑋 × 𝑍) = 𝑌𝑍𝐶))
3635ex 415 . 2 𝑍𝐶 → (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑋 × 𝑍) = 𝑌𝑍𝐶)))
371, 36pm2.61i 184 1 (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑋 × 𝑍) = 𝑌𝑍𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  c0 4293  cotp 4577   × cxp 5555  dom cdm 5557  cfv 6357  (class class class)co 7158  Fincfn 8511  Basecbs 16485   freeLMod cfrlm 20892   maMul cmmul 20996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-ot 4578  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-hom 16591  df-cco 16592  df-0g 16717  df-prds 16723  df-pws 16725  df-sra 19946  df-rgmod 19947  df-dsmm 20878  df-frlm 20893  df-mamu 20997
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator