MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamulid Structured version   Visualization version   GIF version

Theorem mamulid 20013
Description: The identity matrix (as operation in maps-to notation) is a left identity (for any matrix with the same number of rows). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamumat1cl.b 𝐵 = (Base‘𝑅)
mamumat1cl.r (𝜑𝑅 ∈ Ring)
mamumat1cl.o 1 = (1r𝑅)
mamumat1cl.z 0 = (0g𝑅)
mamumat1cl.i 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
mamumat1cl.m (𝜑𝑀 ∈ Fin)
mamulid.n (𝜑𝑁 ∈ Fin)
mamulid.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑀, 𝑁⟩)
mamulid.x (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
Assertion
Ref Expression
mamulid (𝜑 → (𝐼𝐹𝑋) = 𝑋)
Distinct variable groups:   𝑖,𝑗,𝐵   𝑖,𝑀,𝑗   𝜑,𝑖,𝑗   0 ,𝑖,𝑗   1 ,𝑖,𝑗
Allowed substitution hints:   𝑅(𝑖,𝑗)   𝐹(𝑖,𝑗)   𝐼(𝑖,𝑗)   𝑁(𝑖,𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem mamulid
Dummy variables 𝑘 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamulid.f . . . . 5 𝐹 = (𝑅 maMul ⟨𝑀, 𝑀, 𝑁⟩)
2 mamumat1cl.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2609 . . . . 5 (.r𝑅) = (.r𝑅)
4 mamumat1cl.r . . . . . 6 (𝜑𝑅 ∈ Ring)
54adantr 479 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑅 ∈ Ring)
6 mamumat1cl.m . . . . . 6 (𝜑𝑀 ∈ Fin)
76adantr 479 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑀 ∈ Fin)
8 mamulid.n . . . . . 6 (𝜑𝑁 ∈ Fin)
98adantr 479 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑁 ∈ Fin)
10 mamumat1cl.o . . . . . . 7 1 = (1r𝑅)
11 mamumat1cl.z . . . . . . 7 0 = (0g𝑅)
12 mamumat1cl.i . . . . . . 7 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
132, 4, 10, 11, 12, 6mamumat1cl 20011 . . . . . 6 (𝜑𝐼 ∈ (𝐵𝑚 (𝑀 × 𝑀)))
1413adantr 479 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝐼 ∈ (𝐵𝑚 (𝑀 × 𝑀)))
15 mamulid.x . . . . . 6 (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
1615adantr 479 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
17 simprl 789 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑙𝑀)
18 simprr 791 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑘𝑁)
191, 2, 3, 5, 7, 7, 9, 14, 16, 17, 18mamufv 19959 . . . 4 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙(𝐼𝐹𝑋)𝑘) = (𝑅 Σg (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))))
20 ringmnd 18327 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
215, 20syl 17 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑅 ∈ Mnd)
224ad2antrr 757 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑅 ∈ Ring)
23 elmapi 7742 . . . . . . . . . 10 (𝐼 ∈ (𝐵𝑚 (𝑀 × 𝑀)) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
2413, 23syl 17 . . . . . . . . 9 (𝜑𝐼:(𝑀 × 𝑀)⟶𝐵)
2524ad2antrr 757 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
26 simplrl 795 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑙𝑀)
27 simpr 475 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑚𝑀)
2825, 26, 27fovrnd 6681 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → (𝑙𝐼𝑚) ∈ 𝐵)
29 elmapi 7742 . . . . . . . . . 10 (𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
3015, 29syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
3130ad2antrr 757 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
32 simplrr 796 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑘𝑁)
3331, 27, 32fovrnd 6681 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → (𝑚𝑋𝑘) ∈ 𝐵)
342, 3ringcl 18332 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑙𝐼𝑚) ∈ 𝐵 ∧ (𝑚𝑋𝑘) ∈ 𝐵) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) ∈ 𝐵)
3522, 28, 33, 34syl3anc 1317 . . . . . 6 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) ∈ 𝐵)
36 eqid 2609 . . . . . 6 (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘))) = (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))
3735, 36fmptd 6276 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘))):𝑀𝐵)
38263adant3 1073 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → 𝑙𝑀)
39 simp2 1054 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → 𝑚𝑀)
402, 4, 10, 11, 12, 6mat1comp 20012 . . . . . . . . . . 11 ((𝑙𝑀𝑚𝑀) → (𝑙𝐼𝑚) = if(𝑙 = 𝑚, 1 , 0 ))
41 equcom 1931 . . . . . . . . . . . . 13 (𝑙 = 𝑚𝑚 = 𝑙)
4241a1i 11 . . . . . . . . . . . 12 ((𝑙𝑀𝑚𝑀) → (𝑙 = 𝑚𝑚 = 𝑙))
4342ifbid 4057 . . . . . . . . . . 11 ((𝑙𝑀𝑚𝑀) → if(𝑙 = 𝑚, 1 , 0 ) = if(𝑚 = 𝑙, 1 , 0 ))
4440, 43eqtrd 2643 . . . . . . . . . 10 ((𝑙𝑀𝑚𝑀) → (𝑙𝐼𝑚) = if(𝑚 = 𝑙, 1 , 0 ))
4538, 39, 44syl2anc 690 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → (𝑙𝐼𝑚) = if(𝑚 = 𝑙, 1 , 0 ))
46 ifnefalse 4047 . . . . . . . . . 10 (𝑚𝑙 → if(𝑚 = 𝑙, 1 , 0 ) = 0 )
47463ad2ant3 1076 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → if(𝑚 = 𝑙, 1 , 0 ) = 0 )
4845, 47eqtrd 2643 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → (𝑙𝐼𝑚) = 0 )
4948oveq1d 6541 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) = ( 0 (.r𝑅)(𝑚𝑋𝑘)))
502, 3, 11ringlz 18358 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑚𝑋𝑘) ∈ 𝐵) → ( 0 (.r𝑅)(𝑚𝑋𝑘)) = 0 )
5122, 33, 50syl2anc 690 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → ( 0 (.r𝑅)(𝑚𝑋𝑘)) = 0 )
52513adant3 1073 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → ( 0 (.r𝑅)(𝑚𝑋𝑘)) = 0 )
5349, 52eqtrd 2643 . . . . . 6 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) = 0 )
5453, 7suppsssn 7194 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘))) supp 0 ) ⊆ {𝑙})
552, 11, 21, 7, 17, 37, 54gsumpt 18132 . . . 4 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑅 Σg (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))) = ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙))
56 oveq2 6534 . . . . . . . 8 (𝑚 = 𝑙 → (𝑙𝐼𝑚) = (𝑙𝐼𝑙))
57 oveq1 6533 . . . . . . . 8 (𝑚 = 𝑙 → (𝑚𝑋𝑘) = (𝑙𝑋𝑘))
5856, 57oveq12d 6544 . . . . . . 7 (𝑚 = 𝑙 → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) = ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)))
59 ovex 6554 . . . . . . 7 ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)) ∈ V
6058, 36, 59fvmpt 6175 . . . . . 6 (𝑙𝑀 → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙) = ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)))
6160ad2antrl 759 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙) = ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)))
62 equequ1 1938 . . . . . . . . . 10 (𝑖 = 𝑙 → (𝑖 = 𝑗𝑙 = 𝑗))
6362ifbid 4057 . . . . . . . . 9 (𝑖 = 𝑙 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝑙 = 𝑗, 1 , 0 ))
64 equequ2 1939 . . . . . . . . . . 11 (𝑗 = 𝑙 → (𝑙 = 𝑗𝑙 = 𝑙))
6564ifbid 4057 . . . . . . . . . 10 (𝑗 = 𝑙 → if(𝑙 = 𝑗, 1 , 0 ) = if(𝑙 = 𝑙, 1 , 0 ))
66 equid 1925 . . . . . . . . . . 11 𝑙 = 𝑙
6766iftruei 4042 . . . . . . . . . 10 if(𝑙 = 𝑙, 1 , 0 ) = 1
6865, 67syl6eq 2659 . . . . . . . . 9 (𝑗 = 𝑙 → if(𝑙 = 𝑗, 1 , 0 ) = 1 )
69 fvex 6097 . . . . . . . . . 10 (1r𝑅) ∈ V
7010, 69eqeltri 2683 . . . . . . . . 9 1 ∈ V
7163, 68, 12, 70ovmpt2 6671 . . . . . . . 8 ((𝑙𝑀𝑙𝑀) → (𝑙𝐼𝑙) = 1 )
7271anidms 674 . . . . . . 7 (𝑙𝑀 → (𝑙𝐼𝑙) = 1 )
7372ad2antrl 759 . . . . . 6 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙𝐼𝑙) = 1 )
7473oveq1d 6541 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)) = ( 1 (.r𝑅)(𝑙𝑋𝑘)))
7530fovrnda 6680 . . . . . 6 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙𝑋𝑘) ∈ 𝐵)
762, 3, 10ringlidm 18342 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵) → ( 1 (.r𝑅)(𝑙𝑋𝑘)) = (𝑙𝑋𝑘))
775, 75, 76syl2anc 690 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ( 1 (.r𝑅)(𝑙𝑋𝑘)) = (𝑙𝑋𝑘))
7861, 74, 773eqtrd 2647 . . . 4 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙) = (𝑙𝑋𝑘))
7919, 55, 783eqtrd 2647 . . 3 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘))
8079ralrimivva 2953 . 2 (𝜑 → ∀𝑙𝑀𝑘𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘))
812, 4, 1, 6, 6, 8, 13, 15mamucl 19973 . . . . 5 (𝜑 → (𝐼𝐹𝑋) ∈ (𝐵𝑚 (𝑀 × 𝑁)))
82 elmapi 7742 . . . . 5 ((𝐼𝐹𝑋) ∈ (𝐵𝑚 (𝑀 × 𝑁)) → (𝐼𝐹𝑋):(𝑀 × 𝑁)⟶𝐵)
8381, 82syl 17 . . . 4 (𝜑 → (𝐼𝐹𝑋):(𝑀 × 𝑁)⟶𝐵)
84 ffn 5943 . . . 4 ((𝐼𝐹𝑋):(𝑀 × 𝑁)⟶𝐵 → (𝐼𝐹𝑋) Fn (𝑀 × 𝑁))
8583, 84syl 17 . . 3 (𝜑 → (𝐼𝐹𝑋) Fn (𝑀 × 𝑁))
86 ffn 5943 . . . 4 (𝑋:(𝑀 × 𝑁)⟶𝐵𝑋 Fn (𝑀 × 𝑁))
8730, 86syl 17 . . 3 (𝜑𝑋 Fn (𝑀 × 𝑁))
88 eqfnov2 6642 . . 3 (((𝐼𝐹𝑋) Fn (𝑀 × 𝑁) ∧ 𝑋 Fn (𝑀 × 𝑁)) → ((𝐼𝐹𝑋) = 𝑋 ↔ ∀𝑙𝑀𝑘𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘)))
8985, 87, 88syl2anc 690 . 2 (𝜑 → ((𝐼𝐹𝑋) = 𝑋 ↔ ∀𝑙𝑀𝑘𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘)))
9080, 89mpbird 245 1 (𝜑 → (𝐼𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wral 2895  Vcvv 3172  ifcif 4035  cotp 4132  cmpt 4637   × cxp 5025   Fn wfn 5784  wf 5785  cfv 5789  (class class class)co 6526  cmpt2 6528  𝑚 cmap 7721  Fincfn 7818  Basecbs 15643  .rcmulr 15717  0gc0g 15871   Σg cgsu 15872  Mndcmnd 17065  1rcur 18272  Ringcrg 18318   maMul cmmul 19955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-ot 4133  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-se 4987  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-isom 5798  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10870  df-2 10928  df-n0 11142  df-z 11213  df-uz 11522  df-fz 12155  df-fzo 12292  df-seq 12621  df-hash 12937  df-ndx 15646  df-slot 15647  df-base 15648  df-sets 15649  df-ress 15650  df-plusg 15729  df-0g 15873  df-gsum 15874  df-mre 16017  df-mrc 16018  df-acs 16020  df-mgm 17013  df-sgrp 17055  df-mnd 17066  df-submnd 17107  df-grp 17196  df-minusg 17197  df-mulg 17312  df-cntz 17521  df-cmn 17966  df-abl 17967  df-mgp 18261  df-ur 18273  df-ring 18320  df-mamu 19956
This theorem is referenced by:  matring  20015  mat1  20019
  Copyright terms: Public domain W3C validator