MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamures Structured version   Visualization version   GIF version

Theorem mamures 21000
Description: Rows in a matrix product are functions only of the corresponding rows in the left argument. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
mamures.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamures.g 𝐺 = (𝑅 maMul ⟨𝐼, 𝑁, 𝑃⟩)
mamures.b 𝐵 = (Base‘𝑅)
mamures.r (𝜑𝑅𝑉)
mamures.m (𝜑𝑀 ∈ Fin)
mamures.n (𝜑𝑁 ∈ Fin)
mamures.p (𝜑𝑃 ∈ Fin)
mamures.i (𝜑𝐼𝑀)
mamures.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamures.y (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
Assertion
Ref Expression
mamures (𝜑 → ((𝑋𝐹𝑌) ↾ (𝐼 × 𝑃)) = ((𝑋 ↾ (𝐼 × 𝑁))𝐺𝑌))

Proof of Theorem mamures
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamures.i . . . 4 (𝜑𝐼𝑀)
2 ssidd 3989 . . . 4 (𝜑𝑃𝑃)
3 resmpo 7271 . . . 4 ((𝐼𝑀𝑃𝑃) → ((𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
41, 2, 3syl2anc 586 . . 3 (𝜑 → ((𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
5 ovres 7313 . . . . . . . . 9 ((𝑖𝐼𝑘𝑁) → (𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘) = (𝑖𝑋𝑘))
653ad2antl2 1182 . . . . . . . 8 (((𝜑𝑖𝐼𝑗𝑃) ∧ 𝑘𝑁) → (𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘) = (𝑖𝑋𝑘))
76eqcomd 2827 . . . . . . 7 (((𝜑𝑖𝐼𝑗𝑃) ∧ 𝑘𝑁) → (𝑖𝑋𝑘) = (𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘))
87oveq1d 7170 . . . . . 6 (((𝜑𝑖𝐼𝑗𝑃) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗)) = ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗)))
98mpteq2dva 5160 . . . . 5 ((𝜑𝑖𝐼𝑗𝑃) → (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))) = (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗))))
109oveq2d 7171 . . . 4 ((𝜑𝑖𝐼𝑗𝑃) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗)))))
1110mpoeq3dva 7230 . . 3 (𝜑 → (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
124, 11eqtrd 2856 . 2 (𝜑 → ((𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
13 mamures.f . . . 4 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
14 mamures.b . . . 4 𝐵 = (Base‘𝑅)
15 eqid 2821 . . . 4 (.r𝑅) = (.r𝑅)
16 mamures.r . . . 4 (𝜑𝑅𝑉)
17 mamures.m . . . 4 (𝜑𝑀 ∈ Fin)
18 mamures.n . . . 4 (𝜑𝑁 ∈ Fin)
19 mamures.p . . . 4 (𝜑𝑃 ∈ Fin)
20 mamures.x . . . 4 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
21 mamures.y . . . 4 (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
2213, 14, 15, 16, 17, 18, 19, 20, 21mamuval 20996 . . 3 (𝜑 → (𝑋𝐹𝑌) = (𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
2322reseq1d 5851 . 2 (𝜑 → ((𝑋𝐹𝑌) ↾ (𝐼 × 𝑃)) = ((𝑖𝑀, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)))
24 mamures.g . . 3 𝐺 = (𝑅 maMul ⟨𝐼, 𝑁, 𝑃⟩)
2517, 1ssfid 8740 . . 3 (𝜑𝐼 ∈ Fin)
26 elmapi 8427 . . . . . 6 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
2720, 26syl 17 . . . . 5 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
28 xpss1 5573 . . . . . 6 (𝐼𝑀 → (𝐼 × 𝑁) ⊆ (𝑀 × 𝑁))
291, 28syl 17 . . . . 5 (𝜑 → (𝐼 × 𝑁) ⊆ (𝑀 × 𝑁))
3027, 29fssresd 6544 . . . 4 (𝜑 → (𝑋 ↾ (𝐼 × 𝑁)):(𝐼 × 𝑁)⟶𝐵)
3114fvexi 6683 . . . . . 6 𝐵 ∈ V
3231a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
33 xpfi 8788 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐼 × 𝑁) ∈ Fin)
3425, 18, 33syl2anc 586 . . . . 5 (𝜑 → (𝐼 × 𝑁) ∈ Fin)
3532, 34elmapd 8419 . . . 4 (𝜑 → ((𝑋 ↾ (𝐼 × 𝑁)) ∈ (𝐵m (𝐼 × 𝑁)) ↔ (𝑋 ↾ (𝐼 × 𝑁)):(𝐼 × 𝑁)⟶𝐵))
3630, 35mpbird 259 . . 3 (𝜑 → (𝑋 ↾ (𝐼 × 𝑁)) ∈ (𝐵m (𝐼 × 𝑁)))
3724, 14, 15, 16, 25, 18, 19, 36, 21mamuval 20996 . 2 (𝜑 → ((𝑋 ↾ (𝐼 × 𝑁))𝐺𝑌) = (𝑖𝐼, 𝑗𝑃 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r𝑅)(𝑘𝑌𝑗))))))
3812, 23, 373eqtr4d 2866 1 (𝜑 → ((𝑋𝐹𝑌) ↾ (𝐼 × 𝑃)) = ((𝑋 ↾ (𝐼 × 𝑁))𝐺𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3494  wss 3935  cotp 4574  cmpt 5145   × cxp 5552  cres 5556  wf 6350  cfv 6354  (class class class)co 7155  cmpo 7157  m cmap 8405  Fincfn 8508  Basecbs 16482  .rcmulr 16565   Σg cgsu 16713   maMul cmmul 20993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-ot 4575  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-fin 8512  df-mamu 20994
This theorem is referenced by:  mdetmul  21231
  Copyright terms: Public domain W3C validator