MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamuvs2 Structured version   Visualization version   GIF version

Theorem mamuvs2 19973
Description: Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamuvs2.r (𝜑𝑅 ∈ CRing)
mamuvs2.b 𝐵 = (Base‘𝑅)
mamuvs2.t · = (.r𝑅)
mamuvs2.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamuvs2.m (𝜑𝑀 ∈ Fin)
mamuvs2.n (𝜑𝑁 ∈ Fin)
mamuvs2.o (𝜑𝑂 ∈ Fin)
mamuvs2.x (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
mamuvs2.y (𝜑𝑌𝐵)
mamuvs2.z (𝜑𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
Assertion
Ref Expression
mamuvs2 (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)))

Proof of Theorem mamuvs2
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6530 . . . . . . . . . 10 (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)𝑘) = ((((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)‘⟨𝑗, 𝑘⟩)
2 simpr 475 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑗𝑁)
3 simplrr 796 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑘𝑂)
4 opelxpi 5062 . . . . . . . . . . . 12 ((𝑗𝑁𝑘𝑂) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
52, 3, 4syl2anc 690 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
6 mamuvs2.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ Fin)
7 mamuvs2.o . . . . . . . . . . . . . 14 (𝜑𝑂 ∈ Fin)
8 xpfi 8093 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑁 × 𝑂) ∈ Fin)
96, 7, 8syl2anc 690 . . . . . . . . . . . . 13 (𝜑 → (𝑁 × 𝑂) ∈ Fin)
109ad2antrr 757 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑁 × 𝑂) ∈ Fin)
11 mamuvs2.y . . . . . . . . . . . . 13 (𝜑𝑌𝐵)
1211ad2antrr 757 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌𝐵)
13 mamuvs2.z . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
14 elmapi 7742 . . . . . . . . . . . . . 14 (𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
15 ffn 5944 . . . . . . . . . . . . . 14 (𝑍:(𝑁 × 𝑂)⟶𝐵𝑍 Fn (𝑁 × 𝑂))
1613, 14, 153syl 18 . . . . . . . . . . . . 13 (𝜑𝑍 Fn (𝑁 × 𝑂))
1716ad2antrr 757 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍 Fn (𝑁 × 𝑂))
18 df-ov 6530 . . . . . . . . . . . . . 14 (𝑗𝑍𝑘) = (𝑍‘⟨𝑗, 𝑘⟩)
1918eqcomi 2618 . . . . . . . . . . . . 13 (𝑍‘⟨𝑗, 𝑘⟩) = (𝑗𝑍𝑘)
2019a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) ∧ ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂)) → (𝑍‘⟨𝑗, 𝑘⟩) = (𝑗𝑍𝑘))
2110, 12, 17, 20ofc1 6795 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) ∧ ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂)) → ((((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)‘⟨𝑗, 𝑘⟩) = (𝑌 · (𝑗𝑍𝑘)))
225, 21mpdan 698 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)‘⟨𝑗, 𝑘⟩) = (𝑌 · (𝑗𝑍𝑘)))
231, 22syl5eq 2655 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)𝑘) = (𝑌 · (𝑗𝑍𝑘)))
2423oveq2d 6543 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)𝑘)) = ((𝑖𝑋𝑗) · (𝑌 · (𝑗𝑍𝑘))))
25 mamuvs2.r . . . . . . . . . . 11 (𝜑𝑅 ∈ CRing)
26 eqid 2609 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2726crngmgp 18324 . . . . . . . . . . 11 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
2825, 27syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
2928ad2antrr 757 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (mulGrp‘𝑅) ∈ CMnd)
30 mamuvs2.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
31 elmapi 7742 . . . . . . . . . . . 12 (𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
3230, 31syl 17 . . . . . . . . . . 11 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
3332ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
34 simplrl 795 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑖𝑀)
3533, 34, 2fovrnd 6681 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖𝑋𝑗) ∈ 𝐵)
3613, 14syl 17 . . . . . . . . . . 11 (𝜑𝑍:(𝑁 × 𝑂)⟶𝐵)
3736ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
3837, 2, 3fovrnd 6681 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑍𝑘) ∈ 𝐵)
39 mamuvs2.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
4026, 39mgpbas 18264 . . . . . . . . . 10 𝐵 = (Base‘(mulGrp‘𝑅))
41 mamuvs2.t . . . . . . . . . . 11 · = (.r𝑅)
4226, 41mgpplusg 18262 . . . . . . . . . 10 · = (+g‘(mulGrp‘𝑅))
4340, 42cmn12 17982 . . . . . . . . 9 (((mulGrp‘𝑅) ∈ CMnd ∧ ((𝑖𝑋𝑗) ∈ 𝐵𝑌𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑖𝑋𝑗) · (𝑌 · (𝑗𝑍𝑘))) = (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))
4429, 35, 12, 38, 43syl13anc 1319 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑌 · (𝑗𝑍𝑘))) = (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))
4524, 44eqtrd 2643 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)𝑘)) = (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))
4645mpteq2dva 4666 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)𝑘))) = (𝑗𝑁 ↦ (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))
4746oveq2d 6543 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)𝑘)))) = (𝑅 Σg (𝑗𝑁 ↦ (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
48 eqid 2609 . . . . . 6 (0g𝑅) = (0g𝑅)
49 eqid 2609 . . . . . 6 (+g𝑅) = (+g𝑅)
50 crngring 18327 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5125, 50syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
5251adantr 479 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ Ring)
536adantr 479 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑁 ∈ Fin)
5411adantr 479 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑌𝐵)
5551ad2antrr 757 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
5639, 41ringcl 18330 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵)
5755, 35, 38, 56syl3anc 1317 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵)
58 eqid 2609 . . . . . . 7 (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))
59 ovex 6555 . . . . . . . 8 ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)) ∈ V
6059a1i 11 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)) ∈ V)
61 fvex 6098 . . . . . . . 8 (0g𝑅) ∈ V
6261a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (0g𝑅) ∈ V)
6358, 53, 60, 62fsuppmptdm 8146 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))) finSupp (0g𝑅))
6439, 48, 49, 41, 52, 53, 54, 57, 63gsummulc2 18376 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
6547, 64eqtrd 2643 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)𝑘)))) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
66 mamuvs2.f . . . . 5 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
6725adantr 479 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ CRing)
68 mamuvs2.m . . . . . 6 (𝜑𝑀 ∈ Fin)
6968adantr 479 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑀 ∈ Fin)
707adantr 479 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑂 ∈ Fin)
7130adantr 479 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
72 fconst6g 5992 . . . . . . . . 9 (𝑌𝐵 → ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵)
7311, 72syl 17 . . . . . . . 8 (𝜑 → ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵)
74 fvex 6098 . . . . . . . . . 10 (Base‘𝑅) ∈ V
7539, 74eqeltri 2683 . . . . . . . . 9 𝐵 ∈ V
76 elmapg 7734 . . . . . . . . 9 ((𝐵 ∈ V ∧ (𝑁 × 𝑂) ∈ Fin) → (((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵𝑚 (𝑁 × 𝑂)) ↔ ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵))
7775, 9, 76sylancr 693 . . . . . . . 8 (𝜑 → (((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵𝑚 (𝑁 × 𝑂)) ↔ ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵))
7873, 77mpbird 245 . . . . . . 7 (𝜑 → ((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵𝑚 (𝑁 × 𝑂)))
7939, 41ringvcl 19965 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵𝑚 (𝑁 × 𝑂)) ∧ 𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂))) → (((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍) ∈ (𝐵𝑚 (𝑁 × 𝑂)))
8051, 78, 13, 79syl3anc 1317 . . . . . 6 (𝜑 → (((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍) ∈ (𝐵𝑚 (𝑁 × 𝑂)))
8180adantr 479 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍) ∈ (𝐵𝑚 (𝑁 × 𝑂)))
82 simprl 789 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑖𝑀)
83 simprr 791 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑘𝑂)
8466, 39, 41, 67, 69, 53, 70, 71, 81, 82, 83mamufv 19954 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍))𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)𝑘)))))
85 df-ov 6530 . . . . 5 (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))𝑘) = ((((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩)
86 opelxpi 5062 . . . . . . 7 ((𝑖𝑀𝑘𝑂) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
8786adantl 480 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
88 xpfi 8093 . . . . . . . . 9 ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin)
8968, 7, 88syl2anc 690 . . . . . . . 8 (𝜑 → (𝑀 × 𝑂) ∈ Fin)
9089adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑀 × 𝑂) ∈ Fin)
9139, 51, 66, 68, 6, 7, 30, 13mamucl 19968 . . . . . . . . 9 (𝜑 → (𝑋𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
92 elmapi 7742 . . . . . . . . 9 ((𝑋𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → (𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
93 ffn 5944 . . . . . . . . 9 ((𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9491, 92, 933syl 18 . . . . . . . 8 (𝜑 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9594adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
96 df-ov 6530 . . . . . . . . 9 (𝑖(𝑋𝐹𝑍)𝑘) = ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)
9713adantr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
9866, 39, 41, 67, 69, 53, 70, 71, 97, 82, 83mamufv 19954 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))
9996, 98syl5eqr 2657 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))
10099adantr 479 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂)) → ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))
10190, 54, 95, 100ofc1 6795 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂)) → ((((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
10287, 101mpdan 698 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
10385, 102syl5eq 2655 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))𝑘) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
10465, 84, 1033eqtr4d 2653 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))𝑘))
105104ralrimivva 2953 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))𝑘))
10639, 51, 66, 68, 6, 7, 30, 80mamucl 19968 . . . 4 (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
107 elmapi 7742 . . . 4 ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)):(𝑀 × 𝑂)⟶𝐵)
108 ffn 5944 . . . 4 ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) Fn (𝑀 × 𝑂))
109106, 107, 1083syl 18 . . 3 (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) Fn (𝑀 × 𝑂))
110 fconst6g 5992 . . . . . . 7 (𝑌𝐵 → ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵)
11111, 110syl 17 . . . . . 6 (𝜑 → ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵)
112 elmapg 7734 . . . . . . 7 ((𝐵 ∈ V ∧ (𝑀 × 𝑂) ∈ Fin) → (((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵𝑚 (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵))
11375, 89, 112sylancr 693 . . . . . 6 (𝜑 → (((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵𝑚 (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵))
114111, 113mpbird 245 . . . . 5 (𝜑 → ((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
11539, 41ringvcl 19965 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵𝑚 (𝑀 × 𝑂)) ∧ (𝑋𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂))) → (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
11651, 114, 91, 115syl3anc 1317 . . . 4 (𝜑 → (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
117 elmapi 7742 . . . 4 ((((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵)
118 ffn 5944 . . . 4 ((((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂))
119116, 117, 1183syl 18 . . 3 (𝜑 → (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂))
120 eqfnov2 6643 . . 3 (((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) Fn (𝑀 × 𝑂) ∧ (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) → ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))𝑘)))
121109, 119, 120syl2anc 690 . 2 (𝜑 → ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍))𝑘)))
122105, 121mpbird 245 1 (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘𝑓 · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘𝑓 · (𝑋𝐹𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2895  Vcvv 3172  {csn 4124  cop 4130  cotp 4132  cmpt 4637   × cxp 5026   Fn wfn 5785  wf 5786  cfv 5790  (class class class)co 6527  𝑓 cof 6770  𝑚 cmap 7721  Fincfn 7818  Basecbs 15641  +gcplusg 15714  .rcmulr 15715  0gc0g 15869   Σg cgsu 15870  CMndccmn 17962  mulGrpcmgp 18258  Ringcrg 18316  CRingccrg 18317   maMul cmmul 19950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-ot 4133  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-fzo 12290  df-seq 12619  df-hash 12935  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-plusg 15727  df-0g 15871  df-gsum 15872  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-mhm 17104  df-grp 17194  df-minusg 17195  df-ghm 17427  df-cntz 17519  df-cmn 17964  df-abl 17965  df-mgp 18259  df-ur 18271  df-ring 18318  df-cring 18319  df-mamu 19951
This theorem is referenced by:  matassa  20011
  Copyright terms: Public domain W3C validator