MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map0b Structured version   Visualization version   GIF version

Theorem map0b 8449
Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
map0b (𝐴 ≠ ∅ → (∅ ↑m 𝐴) = ∅)

Proof of Theorem map0b
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8430 . . . 4 (𝑓 ∈ (∅ ↑m 𝐴) → 𝑓:𝐴⟶∅)
2 fdm 6524 . . . . 5 (𝑓:𝐴⟶∅ → dom 𝑓 = 𝐴)
3 frn 6522 . . . . . . 7 (𝑓:𝐴⟶∅ → ran 𝑓 ⊆ ∅)
4 ss0 4354 . . . . . . 7 (ran 𝑓 ⊆ ∅ → ran 𝑓 = ∅)
53, 4syl 17 . . . . . 6 (𝑓:𝐴⟶∅ → ran 𝑓 = ∅)
6 dm0rn0 5797 . . . . . 6 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
75, 6sylibr 236 . . . . 5 (𝑓:𝐴⟶∅ → dom 𝑓 = ∅)
82, 7eqtr3d 2860 . . . 4 (𝑓:𝐴⟶∅ → 𝐴 = ∅)
91, 8syl 17 . . 3 (𝑓 ∈ (∅ ↑m 𝐴) → 𝐴 = ∅)
109necon3ai 3043 . 2 (𝐴 ≠ ∅ → ¬ 𝑓 ∈ (∅ ↑m 𝐴))
1110eq0rdv 4359 1 (𝐴 ≠ ∅ → (∅ ↑m 𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wne 3018  wss 3938  c0 4293  dom cdm 5557  ran crn 5558  wf 6353  (class class class)co 7158  m cmap 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-map 8410
This theorem is referenced by:  map0g  8450  mapdom2  8690  ply1plusgfvi  20412  satf0  32621  prv0  32679
  Copyright terms: Public domain W3C validator