MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map0g Structured version   Visualization version   GIF version

Theorem map0g 8450
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
map0g ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅)))

Proof of Theorem map0g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 n0 4312 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑓 𝑓𝐴)
2 fconst6g 6570 . . . . . . . 8 (𝑓𝐴 → (𝐵 × {𝑓}):𝐵𝐴)
3 elmapg 8421 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → ((𝐵 × {𝑓}) ∈ (𝐴m 𝐵) ↔ (𝐵 × {𝑓}):𝐵𝐴))
42, 3syl5ibr 248 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (𝑓𝐴 → (𝐵 × {𝑓}) ∈ (𝐴m 𝐵)))
5 ne0i 4302 . . . . . . 7 ((𝐵 × {𝑓}) ∈ (𝐴m 𝐵) → (𝐴m 𝐵) ≠ ∅)
64, 5syl6 35 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝑓𝐴 → (𝐴m 𝐵) ≠ ∅))
76exlimdv 1934 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑓 𝑓𝐴 → (𝐴m 𝐵) ≠ ∅))
81, 7syl5bi 244 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 ≠ ∅ → (𝐴m 𝐵) ≠ ∅))
98necon4d 3042 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ → 𝐴 = ∅))
10 f0 6562 . . . . . . 7 ∅:∅⟶𝐴
11 feq2 6498 . . . . . . 7 (𝐵 = ∅ → (∅:𝐵𝐴 ↔ ∅:∅⟶𝐴))
1210, 11mpbiri 260 . . . . . 6 (𝐵 = ∅ → ∅:𝐵𝐴)
13 elmapg 8421 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (∅ ∈ (𝐴m 𝐵) ↔ ∅:𝐵𝐴))
1412, 13syl5ibr 248 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐵 = ∅ → ∅ ∈ (𝐴m 𝐵)))
15 ne0i 4302 . . . . 5 (∅ ∈ (𝐴m 𝐵) → (𝐴m 𝐵) ≠ ∅)
1614, 15syl6 35 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐵 = ∅ → (𝐴m 𝐵) ≠ ∅))
1716necon2d 3041 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ → 𝐵 ≠ ∅))
189, 17jcad 515 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 ≠ ∅)))
19 oveq1 7165 . . 3 (𝐴 = ∅ → (𝐴m 𝐵) = (∅ ↑m 𝐵))
20 map0b 8449 . . 3 (𝐵 ≠ ∅ → (∅ ↑m 𝐵) = ∅)
2119, 20sylan9eq 2878 . 2 ((𝐴 = ∅ ∧ 𝐵 ≠ ∅) → (𝐴m 𝐵) = ∅)
2218, 21impbid1 227 1 ((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3018  c0 4293  {csn 4569   × cxp 5555  wf 6353  (class class class)co 7158  m cmap 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-map 8410
This theorem is referenced by:  map0  8453  mapdom2  8690
  Copyright terms: Public domain W3C validator