MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map2psrpr Structured version   Visualization version   GIF version

Theorem map2psrpr 9787
Description: Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
map2psrpr.2 𝐶R
Assertion
Ref Expression
map2psrpr ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶

Proof of Theorem map2psrpr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 9745 . . . . 5 <R ⊆ (R × R)
21brel 5080 . . . 4 ((𝐶 +R -1R) <R 𝐴 → ((𝐶 +R -1R) ∈ R𝐴R))
32simprd 477 . . 3 ((𝐶 +R -1R) <R 𝐴𝐴R)
4 map2psrpr.2 . . . . . 6 𝐶R
5 ltasr 9777 . . . . . 6 (𝐶R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴))))
64, 5ax-mp 5 . . . . 5 (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)))
7 pn0sr 9778 . . . . . . . . . 10 (𝐶R → (𝐶 +R (𝐶 ·R -1R)) = 0R)
84, 7ax-mp 5 . . . . . . . . 9 (𝐶 +R (𝐶 ·R -1R)) = 0R
98oveq1i 6537 . . . . . . . 8 ((𝐶 +R (𝐶 ·R -1R)) +R 𝐴) = (0R +R 𝐴)
10 addasssr 9765 . . . . . . . 8 ((𝐶 +R (𝐶 ·R -1R)) +R 𝐴) = (𝐶 +R ((𝐶 ·R -1R) +R 𝐴))
11 addcomsr 9764 . . . . . . . 8 (0R +R 𝐴) = (𝐴 +R 0R)
129, 10, 113eqtr3i 2639 . . . . . . 7 (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) = (𝐴 +R 0R)
13 0idsr 9774 . . . . . . 7 (𝐴R → (𝐴 +R 0R) = 𝐴)
1412, 13syl5eq 2655 . . . . . 6 (𝐴R → (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) = 𝐴)
1514breq2d 4589 . . . . 5 (𝐴R → ((𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) ↔ (𝐶 +R -1R) <R 𝐴))
166, 15syl5bb 270 . . . 4 (𝐴R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R 𝐴))
17 m1r 9759 . . . . . . . 8 -1RR
18 mulclsr 9761 . . . . . . . 8 ((𝐶R ∧ -1RR) → (𝐶 ·R -1R) ∈ R)
194, 17, 18mp2an 703 . . . . . . 7 (𝐶 ·R -1R) ∈ R
20 addclsr 9760 . . . . . . 7 (((𝐶 ·R -1R) ∈ R𝐴R) → ((𝐶 ·R -1R) +R 𝐴) ∈ R)
2119, 20mpan 701 . . . . . 6 (𝐴R → ((𝐶 ·R -1R) +R 𝐴) ∈ R)
22 df-nr 9734 . . . . . . 7 R = ((P × P) / ~R )
23 breq2 4581 . . . . . . . 8 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (-1R <R [⟨𝑦, 𝑧⟩] ~R ↔ -1R <R ((𝐶 ·R -1R) +R 𝐴)))
24 eqeq2 2620 . . . . . . . . 9 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
2524rexbidv 3033 . . . . . . . 8 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
2623, 25imbi12d 332 . . . . . . 7 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ((-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ) ↔ (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴))))
27 df-m1r 9740 . . . . . . . . . . 11 -1R = [⟨1P, (1P +P 1P)⟩] ~R
2827breq1i 4584 . . . . . . . . . 10 (-1R <R [⟨𝑦, 𝑧⟩] ~R ↔ [⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R )
29 addasspr 9700 . . . . . . . . . . . 12 ((1P +P 1P) +P 𝑦) = (1P +P (1P +P 𝑦))
3029breq2i 4585 . . . . . . . . . . 11 ((1P +P 𝑧)<P ((1P +P 1P) +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦)))
31 ltsrpr 9754 . . . . . . . . . . 11 ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R ↔ (1P +P 𝑧)<P ((1P +P 1P) +P 𝑦))
32 1pr 9693 . . . . . . . . . . . 12 1PP
33 ltapr 9723 . . . . . . . . . . . 12 (1PP → (𝑧<P (1P +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦))))
3432, 33ax-mp 5 . . . . . . . . . . 11 (𝑧<P (1P +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦)))
3530, 31, 343bitr4i 290 . . . . . . . . . 10 ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R𝑧<P (1P +P 𝑦))
3628, 35bitri 262 . . . . . . . . 9 (-1R <R [⟨𝑦, 𝑧⟩] ~R𝑧<P (1P +P 𝑦))
37 ltexpri 9721 . . . . . . . . 9 (𝑧<P (1P +P 𝑦) → ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦))
3836, 37sylbi 205 . . . . . . . 8 (-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦))
39 enreceq 9743 . . . . . . . . . . . 12 (((𝑥P ∧ 1PP) ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑥 +P 𝑧) = (1P +P 𝑦)))
4032, 39mpanl2 712 . . . . . . . . . . 11 ((𝑥P ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑥 +P 𝑧) = (1P +P 𝑦)))
41 addcompr 9699 . . . . . . . . . . . 12 (𝑧 +P 𝑥) = (𝑥 +P 𝑧)
4241eqeq1i 2614 . . . . . . . . . . 11 ((𝑧 +P 𝑥) = (1P +P 𝑦) ↔ (𝑥 +P 𝑧) = (1P +P 𝑦))
4340, 42syl6bbr 276 . . . . . . . . . 10 ((𝑥P ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑧 +P 𝑥) = (1P +P 𝑦)))
4443ancoms 467 . . . . . . . . 9 (((𝑦P𝑧P) ∧ 𝑥P) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑧 +P 𝑥) = (1P +P 𝑦)))
4544rexbidva 3030 . . . . . . . 8 ((𝑦P𝑧P) → (∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦)))
4638, 45syl5ibr 234 . . . . . . 7 ((𝑦P𝑧P) → (-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ))
4722, 26, 46ecoptocl 7701 . . . . . 6 (((𝐶 ·R -1R) +R 𝐴) ∈ R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
4821, 47syl 17 . . . . 5 (𝐴R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
49 oveq2 6535 . . . . . . . 8 ([⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)))
5049, 14sylan9eqr 2665 . . . . . . 7 ((𝐴R ∧ [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
5150ex 448 . . . . . 6 (𝐴R → ([⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
5251reximdv 2998 . . . . 5 (𝐴R → (∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
5348, 52syld 45 . . . 4 (𝐴R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
5416, 53sylbird 248 . . 3 (𝐴R → ((𝐶 +R -1R) <R 𝐴 → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
553, 54mpcom 37 . 2 ((𝐶 +R -1R) <R 𝐴 → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
564mappsrpr 9785 . . . . 5 ((𝐶 +R -1R) <R (𝐶 +R [⟨𝑥, 1P⟩] ~R ) ↔ 𝑥P)
57 breq2 4581 . . . . 5 ((𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → ((𝐶 +R -1R) <R (𝐶 +R [⟨𝑥, 1P⟩] ~R ) ↔ (𝐶 +R -1R) <R 𝐴))
5856, 57syl5bbr 272 . . . 4 ((𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → (𝑥P ↔ (𝐶 +R -1R) <R 𝐴))
5958biimpac 501 . . 3 ((𝑥P ∧ (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴) → (𝐶 +R -1R) <R 𝐴)
6059rexlimiva 3009 . 2 (∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → (𝐶 +R -1R) <R 𝐴)
6155, 60impbii 197 1 ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wrex 2896  cop 4130   class class class wbr 4577  (class class class)co 6527  [cec 7604  Pcnp 9537  1Pc1p 9538   +P cpp 9539  <P cltp 9541   ~R cer 9542  Rcnr 9543  0Rc0r 9544  -1Rcm1r 9546   +R cplr 9547   ·R cmr 9548   <R cltr 9549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-omul 7429  df-er 7606  df-ec 7608  df-qs 7612  df-ni 9550  df-pli 9551  df-mi 9552  df-lti 9553  df-plpq 9586  df-mpq 9587  df-ltpq 9588  df-enq 9589  df-nq 9590  df-erq 9591  df-plq 9592  df-mq 9593  df-1nq 9594  df-rq 9595  df-ltnq 9596  df-np 9659  df-1p 9660  df-plp 9661  df-mp 9662  df-ltp 9663  df-enr 9733  df-nr 9734  df-plr 9735  df-mr 9736  df-ltr 9737  df-0r 9738  df-1r 9739  df-m1r 9740
This theorem is referenced by:  supsrlem  9788
  Copyright terms: Public domain W3C validator