MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map2psrpr Structured version   Visualization version   GIF version

Theorem map2psrpr 10535
Description: Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
map2psrpr.2 𝐶R
Assertion
Ref Expression
map2psrpr ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶

Proof of Theorem map2psrpr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 10493 . . . . 5 <R ⊆ (R × R)
21brel 5620 . . . 4 ((𝐶 +R -1R) <R 𝐴 → ((𝐶 +R -1R) ∈ R𝐴R))
32simprd 498 . . 3 ((𝐶 +R -1R) <R 𝐴𝐴R)
4 map2psrpr.2 . . . . . 6 𝐶R
5 ltasr 10525 . . . . . 6 (𝐶R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴))))
64, 5ax-mp 5 . . . . 5 (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)))
7 pn0sr 10526 . . . . . . . . . 10 (𝐶R → (𝐶 +R (𝐶 ·R -1R)) = 0R)
84, 7ax-mp 5 . . . . . . . . 9 (𝐶 +R (𝐶 ·R -1R)) = 0R
98oveq1i 7169 . . . . . . . 8 ((𝐶 +R (𝐶 ·R -1R)) +R 𝐴) = (0R +R 𝐴)
10 addasssr 10513 . . . . . . . 8 ((𝐶 +R (𝐶 ·R -1R)) +R 𝐴) = (𝐶 +R ((𝐶 ·R -1R) +R 𝐴))
11 addcomsr 10512 . . . . . . . 8 (0R +R 𝐴) = (𝐴 +R 0R)
129, 10, 113eqtr3i 2855 . . . . . . 7 (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) = (𝐴 +R 0R)
13 0idsr 10522 . . . . . . 7 (𝐴R → (𝐴 +R 0R) = 𝐴)
1412, 13syl5eq 2871 . . . . . 6 (𝐴R → (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) = 𝐴)
1514breq2d 5081 . . . . 5 (𝐴R → ((𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) ↔ (𝐶 +R -1R) <R 𝐴))
166, 15syl5bb 285 . . . 4 (𝐴R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R 𝐴))
17 m1r 10507 . . . . . . . 8 -1RR
18 mulclsr 10509 . . . . . . . 8 ((𝐶R ∧ -1RR) → (𝐶 ·R -1R) ∈ R)
194, 17, 18mp2an 690 . . . . . . 7 (𝐶 ·R -1R) ∈ R
20 addclsr 10508 . . . . . . 7 (((𝐶 ·R -1R) ∈ R𝐴R) → ((𝐶 ·R -1R) +R 𝐴) ∈ R)
2119, 20mpan 688 . . . . . 6 (𝐴R → ((𝐶 ·R -1R) +R 𝐴) ∈ R)
22 df-nr 10481 . . . . . . 7 R = ((P × P) / ~R )
23 breq2 5073 . . . . . . . 8 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (-1R <R [⟨𝑦, 𝑧⟩] ~R ↔ -1R <R ((𝐶 ·R -1R) +R 𝐴)))
24 eqeq2 2836 . . . . . . . . 9 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
2524rexbidv 3300 . . . . . . . 8 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
2623, 25imbi12d 347 . . . . . . 7 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ((-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ) ↔ (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴))))
27 df-m1r 10487 . . . . . . . . . . 11 -1R = [⟨1P, (1P +P 1P)⟩] ~R
2827breq1i 5076 . . . . . . . . . 10 (-1R <R [⟨𝑦, 𝑧⟩] ~R ↔ [⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R )
29 addasspr 10447 . . . . . . . . . . . 12 ((1P +P 1P) +P 𝑦) = (1P +P (1P +P 𝑦))
3029breq2i 5077 . . . . . . . . . . 11 ((1P +P 𝑧)<P ((1P +P 1P) +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦)))
31 ltsrpr 10502 . . . . . . . . . . 11 ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R ↔ (1P +P 𝑧)<P ((1P +P 1P) +P 𝑦))
32 1pr 10440 . . . . . . . . . . . 12 1PP
33 ltapr 10470 . . . . . . . . . . . 12 (1PP → (𝑧<P (1P +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦))))
3432, 33ax-mp 5 . . . . . . . . . . 11 (𝑧<P (1P +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦)))
3530, 31, 343bitr4i 305 . . . . . . . . . 10 ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R𝑧<P (1P +P 𝑦))
3628, 35bitri 277 . . . . . . . . 9 (-1R <R [⟨𝑦, 𝑧⟩] ~R𝑧<P (1P +P 𝑦))
37 ltexpri 10468 . . . . . . . . 9 (𝑧<P (1P +P 𝑦) → ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦))
3836, 37sylbi 219 . . . . . . . 8 (-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦))
39 enreceq 10491 . . . . . . . . . . . 12 (((𝑥P ∧ 1PP) ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑥 +P 𝑧) = (1P +P 𝑦)))
4032, 39mpanl2 699 . . . . . . . . . . 11 ((𝑥P ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑥 +P 𝑧) = (1P +P 𝑦)))
41 addcompr 10446 . . . . . . . . . . . 12 (𝑧 +P 𝑥) = (𝑥 +P 𝑧)
4241eqeq1i 2829 . . . . . . . . . . 11 ((𝑧 +P 𝑥) = (1P +P 𝑦) ↔ (𝑥 +P 𝑧) = (1P +P 𝑦))
4340, 42syl6bbr 291 . . . . . . . . . 10 ((𝑥P ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑧 +P 𝑥) = (1P +P 𝑦)))
4443ancoms 461 . . . . . . . . 9 (((𝑦P𝑧P) ∧ 𝑥P) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑧 +P 𝑥) = (1P +P 𝑦)))
4544rexbidva 3299 . . . . . . . 8 ((𝑦P𝑧P) → (∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦)))
4638, 45syl5ibr 248 . . . . . . 7 ((𝑦P𝑧P) → (-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ))
4722, 26, 46ecoptocl 8390 . . . . . 6 (((𝐶 ·R -1R) +R 𝐴) ∈ R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
4821, 47syl 17 . . . . 5 (𝐴R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
49 oveq2 7167 . . . . . . . 8 ([⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)))
5049, 14sylan9eqr 2881 . . . . . . 7 ((𝐴R ∧ [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
5150ex 415 . . . . . 6 (𝐴R → ([⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
5251reximdv 3276 . . . . 5 (𝐴R → (∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
5348, 52syld 47 . . . 4 (𝐴R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
5416, 53sylbird 262 . . 3 (𝐴R → ((𝐶 +R -1R) <R 𝐴 → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
553, 54mpcom 38 . 2 ((𝐶 +R -1R) <R 𝐴 → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
564mappsrpr 10533 . . . . 5 ((𝐶 +R -1R) <R (𝐶 +R [⟨𝑥, 1P⟩] ~R ) ↔ 𝑥P)
57 breq2 5073 . . . . 5 ((𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → ((𝐶 +R -1R) <R (𝐶 +R [⟨𝑥, 1P⟩] ~R ) ↔ (𝐶 +R -1R) <R 𝐴))
5856, 57syl5bbr 287 . . . 4 ((𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → (𝑥P ↔ (𝐶 +R -1R) <R 𝐴))
5958biimpac 481 . . 3 ((𝑥P ∧ (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴) → (𝐶 +R -1R) <R 𝐴)
6059rexlimiva 3284 . 2 (∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → (𝐶 +R -1R) <R 𝐴)
6155, 60impbii 211 1 ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wrex 3142  cop 4576   class class class wbr 5069  (class class class)co 7159  [cec 8290  Pcnp 10284  1Pc1p 10285   +P cpp 10286  <P cltp 10288   ~R cer 10289  Rcnr 10290  0Rc0r 10291  -1Rcm1r 10293   +R cplr 10294   ·R cmr 10295   <R cltr 10296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-omul 8110  df-er 8292  df-ec 8294  df-qs 8298  df-ni 10297  df-pli 10298  df-mi 10299  df-lti 10300  df-plpq 10333  df-mpq 10334  df-ltpq 10335  df-enq 10336  df-nq 10337  df-erq 10338  df-plq 10339  df-mq 10340  df-1nq 10341  df-rq 10342  df-ltnq 10343  df-np 10406  df-1p 10407  df-plp 10408  df-mp 10409  df-ltp 10410  df-enr 10480  df-nr 10481  df-plr 10482  df-mr 10483  df-ltr 10484  df-0r 10485  df-1r 10486  df-m1r 10487
This theorem is referenced by:  supsrlem  10536
  Copyright terms: Public domain W3C validator