Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6dN Structured version   Visualization version   GIF version

Theorem mapdh6dN 36505
Description: Lemmma for mapdh6N 36513. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh.p + = (+g𝑈)
mapdh.a = (+g𝐶)
mapdh6d.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh6d.yz (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdh6d.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh6d.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh6d.w (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdh6d.wn (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
mapdh6dN (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   𝑤,   ,𝑍,𝑥   ,   ,𝐼,𝑥   + ,,𝑥   𝑥,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝐶(𝑥,𝑤)   𝐷(𝑤)   + (𝑤)   (𝑥,𝑤)   𝑄(𝑤,)   𝑅(𝑤)   𝑈(𝑥,𝑤)   𝐹(𝑤)   𝐻(𝑥,𝑤,)   𝐼(𝑤)   𝐽(𝑤)   𝐾(𝑥,𝑤,)   𝑀(𝑤)   (𝑤)   𝑁(𝑤)   𝑉(𝑥,𝑤,)   𝑊(𝑥,𝑤,)   𝑋(𝑤)   𝑌(𝑤)   0 (𝑤)   𝑍(𝑤)

Proof of Theorem mapdh6dN
StepHypRef Expression
1 mapdh.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 mapdh.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 mapdh.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 36358 . . . . 5 (𝜑𝐶 ∈ LMod)
5 mapdh.q . . . . . 6 𝑄 = (0g𝐶)
6 mapdh.i . . . . . 6 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
7 mapdh.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
8 mapdh.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
9 mapdh.v . . . . . 6 𝑉 = (Base‘𝑈)
10 mapdh.s . . . . . 6 = (-g𝑈)
11 mapdhc.o . . . . . 6 0 = (0g𝑈)
12 mapdh.n . . . . . 6 𝑁 = (LSpan‘𝑈)
13 mapdh.d . . . . . 6 𝐷 = (Base‘𝐶)
14 mapdh.r . . . . . 6 𝑅 = (-g𝐶)
15 mapdh.j . . . . . 6 𝐽 = (LSpan‘𝐶)
16 mapdhc.f . . . . . 6 (𝜑𝐹𝐷)
17 mapdh.mn . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
18 mapdhcl.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
19 mapdh6d.w . . . . . . 7 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
2019eldifad 3567 . . . . . 6 (𝜑𝑤𝑉)
211, 8, 3dvhlvec 35875 . . . . . . . . 9 (𝜑𝑈 ∈ LVec)
2218eldifad 3567 . . . . . . . . 9 (𝜑𝑋𝑉)
23 mapdh6d.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2423eldifad 3567 . . . . . . . . 9 (𝜑𝑌𝑉)
25 mapdh6d.wn . . . . . . . . 9 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
269, 12, 21, 20, 22, 24, 25lspindpi 19051 . . . . . . . 8 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
2726simpld 475 . . . . . . 7 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
2827necomd 2845 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤}))
295, 6, 1, 7, 8, 9, 10, 11, 12, 2, 13, 14, 15, 3, 16, 17, 18, 20, 28mapdhcl 36493 . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ∈ 𝐷)
30 mapdh.a . . . . . 6 = (+g𝐶)
3113, 30, 5lmod0vrid 18815 . . . . 5 ((𝐶 ∈ LMod ∧ (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ∈ 𝐷) → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
324, 29, 31syl2anc 692 . . . 4 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
3332adantr 481 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
34 oteq3 4381 . . . . . 6 ((𝑌 + 𝑍) = 0 → ⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩ = ⟨𝑋, 𝐹, 0 ⟩)
3534fveq2d 6152 . . . . 5 ((𝑌 + 𝑍) = 0 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = (𝐼‘⟨𝑋, 𝐹, 0 ⟩))
365, 6, 11, 18, 16mapdhval0 36491 . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄)
3735, 36sylan9eqr 2677 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = 𝑄)
3837oveq2d 6620 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) 𝑄))
39 oveq2 6612 . . . . . 6 ((𝑌 + 𝑍) = 0 → (𝑤 + (𝑌 + 𝑍)) = (𝑤 + 0 ))
401, 8, 3dvhlmod 35876 . . . . . . 7 (𝜑𝑈 ∈ LMod)
41 mapdh.p . . . . . . . 8 + = (+g𝑈)
429, 41, 11lmod0vrid 18815 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑤𝑉) → (𝑤 + 0 ) = 𝑤)
4340, 20, 42syl2anc 692 . . . . . 6 (𝜑 → (𝑤 + 0 ) = 𝑤)
4439, 43sylan9eqr 2677 . . . . 5 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑤 + (𝑌 + 𝑍)) = 𝑤)
4544oteq3d 4384 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → ⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩ = ⟨𝑋, 𝐹, 𝑤⟩)
4645fveq2d 6152 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
4733, 38, 463eqtr4rd 2666 . 2 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
483adantr 481 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4916adantr 481 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝐹𝐷)
5017adantr 481 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
5118adantr 481 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
5219adantr 481 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑤 ∈ (𝑉 ∖ { 0 }))
53 mapdh6d.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
5453eldifad 3567 . . . . . 6 (𝜑𝑍𝑉)
559, 41lmodvacl 18798 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
5640, 24, 54, 55syl3anc 1323 . . . . 5 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
5756anim1i 591 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 ))
58 eldifsn 4287 . . . 4 ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 ))
5957, 58sylibr 224 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }))
60 mapdh6d.yz . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
61 mapdh6d.xn . . . . . . . . 9 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
629, 12, 21, 22, 24, 54, 61lspindpi 19051 . . . . . . . 8 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
6362simpld 475 . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
649, 41, 11, 12, 21, 18, 23, 53, 19, 60, 63, 25mapdindp1 36486 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
659, 41, 11, 12, 21, 18, 23, 53, 19, 60, 63, 25mapdindp2 36487 . . . . . 6 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, (𝑌 + 𝑍)}))
669, 11, 12, 21, 18, 56, 20, 64, 65lspindp1 19052 . . . . 5 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)})))
6766simprd 479 . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)}))
6867adantr 481 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑤, (𝑌 + 𝑍)}))
6926simprd 479 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
709, 11, 12, 21, 19, 24, 69lspsnne1 19036 . . . . . . . 8 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌}))
71 eqid 2621 . . . . . . . . . 10 (LSSum‘𝑈) = (LSSum‘𝑈)
729, 12, 71, 40, 24, 54lsmpr 19008 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑌, 𝑍}) = ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})))
7360oveq2d 6620 . . . . . . . . 9 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})))
74 eqid 2621 . . . . . . . . . . . . 13 (LSubSp‘𝑈) = (LSubSp‘𝑈)
759, 74, 12lspsncl 18896 . . . . . . . . . . . 12 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
7640, 24, 75syl2anc 692 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
7774lsssubg 18876 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑈))
7840, 76, 77syl2anc 692 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑈))
7971lsmidm 17998 . . . . . . . . . 10 ((𝑁‘{𝑌}) ∈ (SubGrp‘𝑈) → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = (𝑁‘{𝑌}))
8078, 79syl 17 . . . . . . . . 9 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑌})) = (𝑁‘{𝑌}))
8172, 73, 803eqtr2d 2661 . . . . . . . 8 (𝜑 → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑌}))
8270, 81neleqtrrd 2720 . . . . . . 7 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑍}))
839, 41, 12, 40, 24, 54, 20, 82lspindp4 19056 . . . . . 6 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑌, (𝑌 + 𝑍)}))
849, 12, 21, 20, 24, 56, 83lspindpi 19051 . . . . 5 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)})))
8584simprd 479 . . . 4 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
8685adantr 481 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑤}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
87 eqidd 2622 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
88 eqidd 2622 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩))
895, 6, 1, 7, 8, 9, 10, 11, 12, 2, 13, 14, 15, 48, 49, 50, 51, 41, 30, 52, 59, 68, 86, 87, 88mapdh6aN 36501 . 2 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
9047, 89pm2.61dane 2877 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  Vcvv 3186  cdif 3552  ifcif 4058  {csn 4148  {cpr 4150  cotp 4156  cmpt 4673  cfv 5847  crio 6564  (class class class)co 6604  1st c1st 7111  2nd c2nd 7112  Basecbs 15781  +gcplusg 15862  0gc0g 16021  -gcsg 17345  SubGrpcsubg 17509  LSSumclsm 17970  LModclmod 18784  LSubSpclss 18851  LSpanclspn 18890  HLchlt 34114  LHypclh 34747  DVecHcdvh 35844  LCDualclcd 36352  mapdcmpd 36390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-riotaBAD 33716
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-ot 4157  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-undef 7344  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-0g 16023  df-mre 16167  df-mrc 16168  df-acs 16170  df-preset 16849  df-poset 16867  df-plt 16879  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-p1 16961  df-lat 16967  df-clat 17029  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-cntz 17671  df-oppg 17697  df-lsm 17972  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-drng 18670  df-lmod 18786  df-lss 18852  df-lsp 18891  df-lvec 19022  df-lsatoms 33740  df-lshyp 33741  df-lcv 33783  df-lfl 33822  df-lkr 33850  df-ldual 33888  df-oposet 33940  df-ol 33942  df-oml 33943  df-covers 34030  df-ats 34031  df-atl 34062  df-cvlat 34086  df-hlat 34115  df-llines 34261  df-lplanes 34262  df-lvols 34263  df-lines 34264  df-psubsp 34266  df-pmap 34267  df-padd 34559  df-lhyp 34751  df-laut 34752  df-ldil 34867  df-ltrn 34868  df-trl 34923  df-tgrp 35508  df-tendo 35520  df-edring 35522  df-dveca 35768  df-disoa 35795  df-dvech 35845  df-dib 35905  df-dic 35939  df-dih 35995  df-doch 36114  df-djh 36161  df-lcdual 36353  df-mapd 36391
This theorem is referenced by:  mapdh6gN  36508
  Copyright terms: Public domain W3C validator