Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8ab Structured version   Visualization version   GIF version

Theorem mapdh8ab 35882
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8ab.f (𝜑𝐹𝐷)
mapdh8ab.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh8ab.eg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh8ab.ee (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
mapdh8ab.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh8ab.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh8ab.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh8ab.t (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
mapdh8ab.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
mapdh8ab.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh8ab.yn (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇}))
Assertion
Ref Expression
mapdh8ab (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐺,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   ,𝐸,𝑥   ,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐼(𝑥)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdh8ab
StepHypRef Expression
1 mapdh8a.h . 2 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . 2 𝑉 = (Base‘𝑈)
4 mapdh8a.s . 2 = (-g𝑈)
5 mapdh8a.o . 2 0 = (0g𝑈)
6 mapdh8a.n . 2 𝑁 = (LSpan‘𝑈)
7 mapdh8a.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh8a.d . 2 𝐷 = (Base‘𝐶)
9 mapdh8a.r . 2 𝑅 = (-g𝐶)
10 mapdh8a.q . 2 𝑄 = (0g𝐶)
11 mapdh8a.j . 2 𝐽 = (LSpan‘𝐶)
12 mapdh8a.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh8a.i . 2 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh8a.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdh8ab.f . 2 (𝜑𝐹𝐷)
16 mapdh8ab.mn . 2 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 mapdh8ab.eg . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
18 mapdh8ab.ee . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
19 mapdh8ab.x . 2 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
20 mapdh8ab.y . 2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
21 mapdh8ab.z . 2 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
221, 2, 14dvhlvec 35214 . . . . . 6 (𝜑𝑈 ∈ LVec)
2319eldifad 3546 . . . . . 6 (𝜑𝑋𝑉)
2420eldifad 3546 . . . . . 6 (𝜑𝑌𝑉)
2521eldifad 3546 . . . . . 6 (𝜑𝑍𝑉)
26 mapdh8ab.xn . . . . . 6 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
273, 6, 22, 23, 24, 25, 26lspindpi 18894 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
2827simprd 477 . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
2928necomd 2831 . . 3 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑋}))
30 mapdh8ab.yn . . 3 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇}))
3129, 30neeqtrd 2845 . 2 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇}))
32 mapdh8ab.t . 2 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
3330sseq1d 3589 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑍})))
34 eqid 2604 . . . . . 6 (LSubSp‘𝑈) = (LSubSp‘𝑈)
351, 2, 14dvhlmod 35215 . . . . . 6 (𝜑𝑈 ∈ LMod)
363, 34, 6, 35, 24, 25lspprcl 18740 . . . . . 6 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑈))
373, 34, 6, 35, 36, 23lspsnel5 18757 . . . . 5 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})))
3832eldifad 3546 . . . . . 6 (𝜑𝑇𝑉)
393, 34, 6, 35, 36, 38lspsnel5 18757 . . . . 5 (𝜑 → (𝑇 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑍})))
4033, 37, 393bitr4d 298 . . . 4 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ 𝑇 ∈ (𝑁‘{𝑌, 𝑍})))
4126, 40mtbid 312 . . 3 (𝜑 → ¬ 𝑇 ∈ (𝑁‘{𝑌, 𝑍}))
4222adantr 479 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑈 ∈ LVec)
4320adantr 479 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
4438adantr 479 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑇𝑉)
4525adantr 479 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑍𝑉)
46 mapdh8ab.yz . . . . 5 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4746adantr 479 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
48 simpr 475 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑍, 𝑇}))
49 prcom 4205 . . . . . 6 {𝑍, 𝑇} = {𝑇, 𝑍}
5049fveq2i 6086 . . . . 5 (𝑁‘{𝑍, 𝑇}) = (𝑁‘{𝑇, 𝑍})
5148, 50syl6eleq 2692 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑇, 𝑍}))
523, 5, 6, 42, 43, 44, 45, 47, 51lspexch 18891 . . 3 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑇 ∈ (𝑁‘{𝑌, 𝑍}))
5341, 52mtand 688 . 2 (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇}))
541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 31, 32, 53, 26mapdh8aa 35881 1 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1474  wcel 1975  wne 2774  Vcvv 3167  cdif 3531  wss 3534  ifcif 4030  {csn 4119  {cpr 4121  cotp 4127  cmpt 4632  cfv 5785  crio 6483  (class class class)co 6522  1st c1st 7029  2nd c2nd 7030  Basecbs 15636  0gc0g 15864  -gcsg 17188  LSubSpclss 18694  LSpanclspn 18733  LVecclvec 18864  HLchlt 33453  LHypclh 34086  DVecHcdvh 35183  LCDualclcd 35691  mapdcmpd 35729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864  ax-riotaBAD 33055
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-ot 4128  df-uni 4362  df-int 4400  df-iun 4446  df-iin 4447  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-of 6767  df-om 6930  df-1st 7031  df-2nd 7032  df-tpos 7211  df-undef 7258  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-1o 7419  df-oadd 7423  df-er 7601  df-map 7718  df-en 7814  df-dom 7815  df-sdom 7816  df-fin 7817  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-nn 10863  df-2 10921  df-3 10922  df-4 10923  df-5 10924  df-6 10925  df-n0 11135  df-z 11206  df-uz 11515  df-fz 12148  df-struct 15638  df-ndx 15639  df-slot 15640  df-base 15641  df-sets 15642  df-ress 15643  df-plusg 15722  df-mulr 15723  df-sca 15725  df-vsca 15726  df-0g 15866  df-mre 16010  df-mrc 16011  df-acs 16013  df-preset 16692  df-poset 16710  df-plt 16722  df-lub 16738  df-glb 16739  df-join 16740  df-meet 16741  df-p0 16803  df-p1 16804  df-lat 16810  df-clat 16872  df-mgm 17006  df-sgrp 17048  df-mnd 17059  df-submnd 17100  df-grp 17189  df-minusg 17190  df-sbg 17191  df-subg 17355  df-cntz 17514  df-oppg 17540  df-lsm 17815  df-cmn 17959  df-abl 17960  df-mgp 18254  df-ur 18266  df-ring 18313  df-oppr 18387  df-dvdsr 18405  df-unit 18406  df-invr 18436  df-dvr 18447  df-drng 18513  df-lmod 18629  df-lss 18695  df-lsp 18734  df-lvec 18865  df-lsatoms 33079  df-lshyp 33080  df-lcv 33122  df-lfl 33161  df-lkr 33189  df-ldual 33227  df-oposet 33279  df-ol 33281  df-oml 33282  df-covers 33369  df-ats 33370  df-atl 33401  df-cvlat 33425  df-hlat 33454  df-llines 33600  df-lplanes 33601  df-lvols 33602  df-lines 33603  df-psubsp 33605  df-pmap 33606  df-padd 33898  df-lhyp 34090  df-laut 34091  df-ldil 34206  df-ltrn 34207  df-trl 34262  df-tgrp 34847  df-tendo 34859  df-edring 34861  df-dveca 35107  df-disoa 35134  df-dvech 35184  df-dib 35244  df-dic 35278  df-dih 35334  df-doch 35453  df-djh 35500  df-lcdual 35692  df-mapd 35730
This theorem is referenced by:  mapdh8ac  35883
  Copyright terms: Public domain W3C validator