![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8ab | Structured version Visualization version GIF version |
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.) |
Ref | Expression |
---|---|
mapdh8a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh8a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh8a.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh8a.s | ⊢ − = (-g‘𝑈) |
mapdh8a.o | ⊢ 0 = (0g‘𝑈) |
mapdh8a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh8a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh8a.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh8a.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh8a.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh8a.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh8a.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh8a.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh8a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdh8ab.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh8ab.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdh8ab.eg | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
mapdh8ab.ee | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) |
mapdh8ab.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdh8ab.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdh8ab.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
mapdh8ab.t | ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
mapdh8ab.yz | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
mapdh8ab.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
mapdh8ab.yn | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇})) |
Ref | Expression |
---|---|
mapdh8ab | ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑍, 𝐸, 𝑇〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh8a.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdh8a.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | mapdh8a.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
4 | mapdh8a.s | . 2 ⊢ − = (-g‘𝑈) | |
5 | mapdh8a.o | . 2 ⊢ 0 = (0g‘𝑈) | |
6 | mapdh8a.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
7 | mapdh8a.c | . 2 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | mapdh8a.d | . 2 ⊢ 𝐷 = (Base‘𝐶) | |
9 | mapdh8a.r | . 2 ⊢ 𝑅 = (-g‘𝐶) | |
10 | mapdh8a.q | . 2 ⊢ 𝑄 = (0g‘𝐶) | |
11 | mapdh8a.j | . 2 ⊢ 𝐽 = (LSpan‘𝐶) | |
12 | mapdh8a.m | . 2 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
13 | mapdh8a.i | . 2 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
14 | mapdh8a.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | mapdh8ab.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
16 | mapdh8ab.mn | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
17 | mapdh8ab.eg | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) | |
18 | mapdh8ab.ee | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) | |
19 | mapdh8ab.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
20 | mapdh8ab.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
21 | mapdh8ab.z | . 2 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
22 | 1, 2, 14 | dvhlvec 36715 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
23 | 19 | eldifad 3619 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
24 | 20 | eldifad 3619 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
25 | 21 | eldifad 3619 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
26 | mapdh8ab.xn | . . . . . 6 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
27 | 3, 6, 22, 23, 24, 25, 26 | lspindpi 19180 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
28 | 27 | simprd 478 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
29 | 28 | necomd 2878 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑋})) |
30 | mapdh8ab.yn | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇})) | |
31 | 29, 30 | neeqtrd 2892 | . 2 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) |
32 | mapdh8ab.t | . 2 ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) | |
33 | 30 | sseq1d 3665 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
34 | eqid 2651 | . . . . . 6 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
35 | 1, 2, 14 | dvhlmod 36716 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
36 | 3, 34, 6, 35, 24, 25 | lspprcl 19026 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑈)) |
37 | 3, 34, 6, 35, 36, 23 | lspsnel5 19043 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
38 | 32 | eldifad 3619 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
39 | 3, 34, 6, 35, 36, 38 | lspsnel5 19043 | . . . . 5 ⊢ (𝜑 → (𝑇 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
40 | 33, 37, 39 | 3bitr4d 300 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ 𝑇 ∈ (𝑁‘{𝑌, 𝑍}))) |
41 | 26, 40 | mtbid 313 | . . 3 ⊢ (𝜑 → ¬ 𝑇 ∈ (𝑁‘{𝑌, 𝑍})) |
42 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑈 ∈ LVec) |
43 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
44 | 38 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑇 ∈ 𝑉) |
45 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑍 ∈ 𝑉) |
46 | mapdh8ab.yz | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) | |
47 | 46 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
48 | simpr 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) | |
49 | prcom 4299 | . . . . . 6 ⊢ {𝑍, 𝑇} = {𝑇, 𝑍} | |
50 | 49 | fveq2i 6232 | . . . . 5 ⊢ (𝑁‘{𝑍, 𝑇}) = (𝑁‘{𝑇, 𝑍}) |
51 | 48, 50 | syl6eleq 2740 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑇, 𝑍})) |
52 | 3, 5, 6, 42, 43, 44, 45, 47, 51 | lspexch 19177 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑇 ∈ (𝑁‘{𝑌, 𝑍})) |
53 | 41, 52 | mtand 692 | . 2 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) |
54 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 31, 32, 53, 26 | mapdh8aa 37382 | 1 ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑍, 𝐸, 𝑇〉)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 Vcvv 3231 ∖ cdif 3604 ⊆ wss 3607 ifcif 4119 {csn 4210 {cpr 4212 〈cotp 4218 ↦ cmpt 4762 ‘cfv 5926 ℩crio 6650 (class class class)co 6690 1st c1st 7208 2nd c2nd 7209 Basecbs 15904 0gc0g 16147 -gcsg 17471 LSubSpclss 18980 LSpanclspn 19019 LVecclvec 19150 HLchlt 34955 LHypclh 35588 DVecHcdvh 36684 LCDualclcd 37192 mapdcmpd 37230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-riotaBAD 34557 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-ot 4219 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-tpos 7397 df-undef 7444 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-0g 16149 df-mre 16293 df-mrc 16294 df-acs 16296 df-preset 16975 df-poset 16993 df-plt 17005 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-p0 17086 df-p1 17087 df-lat 17093 df-clat 17155 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-grp 17472 df-minusg 17473 df-sbg 17474 df-subg 17638 df-cntz 17796 df-oppg 17822 df-lsm 18097 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-ring 18595 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-dvr 18729 df-drng 18797 df-lmod 18913 df-lss 18981 df-lsp 19020 df-lvec 19151 df-lsatoms 34581 df-lshyp 34582 df-lcv 34624 df-lfl 34663 df-lkr 34691 df-ldual 34729 df-oposet 34781 df-ol 34783 df-oml 34784 df-covers 34871 df-ats 34872 df-atl 34903 df-cvlat 34927 df-hlat 34956 df-llines 35102 df-lplanes 35103 df-lvols 35104 df-lines 35105 df-psubsp 35107 df-pmap 35108 df-padd 35400 df-lhyp 35592 df-laut 35593 df-ldil 35708 df-ltrn 35709 df-trl 35764 df-tgrp 36348 df-tendo 36360 df-edring 36362 df-dveca 36608 df-disoa 36635 df-dvech 36685 df-dib 36745 df-dic 36779 df-dih 36835 df-doch 36954 df-djh 37001 df-lcdual 37193 df-mapd 37231 |
This theorem is referenced by: mapdh8ac 37384 |
Copyright terms: Public domain | W3C validator |