Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8ad Structured version   Visualization version   GIF version

Theorem mapdh8ad 37562
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8ac.f (𝜑𝐹𝐷)
mapdh8ac.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh8ac.eg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh8ac.ee (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
mapdh8ac.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh8ac.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh8ac.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh8ac.t (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
mapdh8ac.yn (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇}))
mapdh8ad.xy (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdh8ad.xz (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
Assertion
Ref Expression
mapdh8ad (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐺,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   ,𝐸,𝑥   ,𝑍,𝑥   𝑥,𝐼   ,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐾(𝑥,)   𝑉(𝑥)   𝑊(𝑥,)

Proof of Theorem mapdh8ad
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdh8a.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . 3 𝑉 = (Base‘𝑈)
4 mapdh8a.n . . 3 𝑁 = (LSpan‘𝑈)
5 mapdh8a.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 mapdh8ac.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
76eldifad 3719 . . 3 (𝜑𝑋𝑉)
8 mapdh8ac.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
98eldifad 3719 . . 3 (𝜑𝑌𝑉)
10 mapdh8ac.z . . . 4 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1110eldifad 3719 . . 3 (𝜑𝑍𝑉)
121, 2, 3, 4, 5, 7, 9, 11dvh3dim2 37231 . 2 (𝜑 → ∃𝑤𝑉𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})))
13 mapdh8a.s . . . 4 = (-g𝑈)
14 mapdh8a.o . . . 4 0 = (0g𝑈)
15 mapdh8a.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
16 mapdh8a.d . . . 4 𝐷 = (Base‘𝐶)
17 mapdh8a.r . . . 4 𝑅 = (-g𝐶)
18 mapdh8a.q . . . 4 𝑄 = (0g𝐶)
19 mapdh8a.j . . . 4 𝐽 = (LSpan‘𝐶)
20 mapdh8a.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
21 mapdh8a.i . . . 4 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
2253ad2ant1 1127 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
23 mapdh8ac.f . . . . 5 (𝜑𝐹𝐷)
24233ad2ant1 1127 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝐹𝐷)
25 mapdh8ac.mn . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
26253ad2ant1 1127 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
27 mapdh8ac.eg . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
28273ad2ant1 1127 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
29 mapdh8ac.ee . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
30293ad2ant1 1127 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
3163ad2ant1 1127 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
3283ad2ant1 1127 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
33103ad2ant1 1127 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑍 ∈ (𝑉 ∖ { 0 }))
34 mapdh8ac.t . . . . 5 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
35343ad2ant1 1127 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑇 ∈ (𝑉 ∖ { 0 }))
36 mapdh8ac.yn . . . . 5 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇}))
37363ad2ant1 1127 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝑁‘{𝑋}) = (𝑁‘{𝑇}))
38 eqidd 2753 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
39 eqid 2752 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
401, 2, 5dvhlmod 36893 . . . . . 6 (𝜑𝑈 ∈ LMod)
41403ad2ant1 1127 . . . . 5 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑈 ∈ LMod)
423, 39, 4, 40, 7, 9lspprcl 19172 . . . . . 6 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
43423ad2ant1 1127 . . . . 5 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
44 simp2 1131 . . . . 5 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑤𝑉)
45 simp3l 1241 . . . . 5 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
463, 14, 39, 41, 43, 44, 45lssneln0 19146 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑤 ∈ (𝑉 ∖ { 0 }))
471, 2, 5dvhlvec 36892 . . . . . . . 8 (𝜑𝑈 ∈ LVec)
48473ad2ant1 1127 . . . . . . 7 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑈 ∈ LVec)
4973ad2ant1 1127 . . . . . . 7 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑋𝑉)
5093ad2ant1 1127 . . . . . . 7 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑌𝑉)
513, 4, 48, 44, 49, 50, 45lspindpi 19326 . . . . . 6 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
5251simprd 482 . . . . 5 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
5352necomd 2979 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
54 simpl1 1225 . . . . . . 7 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝜑)
5554, 47syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑈 ∈ LVec)
5654, 6syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
57 simpl2 1227 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑤𝑉)
5854, 9syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑌𝑉)
59 mapdh8ad.xy . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
6054, 59syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
61 simpr 479 . . . . . . 7 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
62 prcom 4403 . . . . . . . 8 {𝑌, 𝑤} = {𝑤, 𝑌}
6362fveq2i 6347 . . . . . . 7 (𝑁‘{𝑌, 𝑤}) = (𝑁‘{𝑤, 𝑌})
6461, 63syl6eleq 2841 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑋 ∈ (𝑁‘{𝑤, 𝑌}))
653, 14, 4, 55, 56, 57, 58, 60, 64lspexch 19323 . . . . 5 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) → 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
6645, 65mtand 694 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
67113ad2ant1 1127 . . . . . 6 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → 𝑍𝑉)
68 simp3r 1242 . . . . . 6 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))
693, 4, 48, 44, 49, 67, 68lspindpi 19326 . . . . 5 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑍})))
7069simprd 482 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑍}))
71 simpl1 1225 . . . . . . 7 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝜑)
7271, 47syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝑈 ∈ LVec)
7371, 6syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
74 simpl2 1227 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝑤𝑉)
7571, 11syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝑍𝑉)
76 mapdh8ad.xz . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
7771, 76syl 17 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
78 simpr 479 . . . . . 6 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝑋 ∈ (𝑁‘{𝑤, 𝑍}))
793, 14, 4, 72, 73, 74, 75, 77, 78lspexch 19323 . . . . 5 (((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) ∧ 𝑋 ∈ (𝑁‘{𝑤, 𝑍})) → 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))
8068, 79mtand 694 . . . 4 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑍}))
811, 2, 3, 13, 14, 4, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 28, 30, 31, 32, 33, 35, 37, 38, 46, 53, 66, 70, 80mapdh8ac 37561 . . 3 ((𝜑𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩))
8281rexlimdv3a 3163 . 2 (𝜑 → (∃𝑤𝑉𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩)))
8312, 82mpd 15 1 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1624  wcel 2131  wne 2924  wrex 3043  Vcvv 3332  cdif 3704  ifcif 4222  {csn 4313  {cpr 4315  cotp 4321  cmpt 4873  cfv 6041  crio 6765  (class class class)co 6805  1st c1st 7323  2nd c2nd 7324  Basecbs 16051  0gc0g 16294  -gcsg 17617  LModclmod 19057  LSubSpclss 19126  LSpanclspn 19165  LVecclvec 19296  HLchlt 35132  LHypclh 35765  DVecHcdvh 36861  LCDualclcd 37369  mapdcmpd 37407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-riotaBAD 34734
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-ot 4322  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-om 7223  df-1st 7325  df-2nd 7326  df-tpos 7513  df-undef 7560  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-map 8017  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-n0 11477  df-z 11562  df-uz 11872  df-fz 12512  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-sca 16151  df-vsca 16152  df-0g 16296  df-mre 16440  df-mrc 16441  df-acs 16443  df-preset 17121  df-poset 17139  df-plt 17151  df-lub 17167  df-glb 17168  df-join 17169  df-meet 17170  df-p0 17232  df-p1 17233  df-lat 17239  df-clat 17301  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-submnd 17529  df-grp 17618  df-minusg 17619  df-sbg 17620  df-subg 17784  df-cntz 17942  df-oppg 17968  df-lsm 18243  df-cmn 18387  df-abl 18388  df-mgp 18682  df-ur 18694  df-ring 18741  df-oppr 18815  df-dvdsr 18833  df-unit 18834  df-invr 18864  df-dvr 18875  df-drng 18943  df-lmod 19059  df-lss 19127  df-lsp 19166  df-lvec 19297  df-lsatoms 34758  df-lshyp 34759  df-lcv 34801  df-lfl 34840  df-lkr 34868  df-ldual 34906  df-oposet 34958  df-ol 34960  df-oml 34961  df-covers 35048  df-ats 35049  df-atl 35080  df-cvlat 35104  df-hlat 35133  df-llines 35279  df-lplanes 35280  df-lvols 35281  df-lines 35282  df-psubsp 35284  df-pmap 35285  df-padd 35577  df-lhyp 35769  df-laut 35770  df-ldil 35885  df-ltrn 35886  df-trl 35941  df-tgrp 36525  df-tendo 36537  df-edring 36539  df-dveca 36785  df-disoa 36812  df-dvech 36862  df-dib 36922  df-dic 36956  df-dih 37012  df-doch 37131  df-djh 37178  df-lcdual 37370  df-mapd 37408
This theorem is referenced by:  mapdh8j  37571
  Copyright terms: Public domain W3C validator