Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh9a Structured version   Visualization version   GIF version

Theorem mapdh9a 38929
Description: Lemma for part (9) in [Baer] p. 48. TODO: why is this 50% larger than mapdh9aOLDN 38930? (Contributed by NM, 14-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8h.f (𝜑𝐹𝐷)
mapdh8h.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh9a.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh9a.t (𝜑𝑇𝑉)
Assertion
Ref Expression
mapdh9a (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   𝑥,𝐼   ,𝑉   𝑦,𝑧,𝐷   𝑦,𝐹,𝑧   𝑦,𝐼,𝑧   𝑦,𝑁,𝑧   𝑦, 0 ,𝑧   𝑦,𝑇,𝑧   𝑧,𝑈   𝑦,𝑉,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦,𝑧   𝑧,,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑦,𝑧)   𝑄(𝑦,𝑧,)   𝑅(𝑦,𝑧)   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑧,)   𝐽(𝑦,𝑧)   𝐾(𝑥,𝑦,𝑧,)   𝑀(𝑦,𝑧)   (𝑦,𝑧)   𝑉(𝑥)   𝑊(𝑥,𝑦,𝑧,)

Proof of Theorem mapdh9a
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdh8a.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . . . . . 7 𝑉 = (Base‘𝑈)
4 mapdh8a.s . . . . . . 7 = (-g𝑈)
5 mapdh8a.o . . . . . . 7 0 = (0g𝑈)
6 mapdh8a.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
7 mapdh8a.c . . . . . . 7 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh8a.d . . . . . . 7 𝐷 = (Base‘𝐶)
9 mapdh8a.r . . . . . . 7 𝑅 = (-g𝐶)
10 mapdh8a.q . . . . . . 7 𝑄 = (0g𝐶)
11 mapdh8a.j . . . . . . 7 𝐽 = (LSpan‘𝐶)
12 mapdh8a.m . . . . . . 7 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh8a.i . . . . . . 7 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh8a.k . . . . . . . 8 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15143ad2ant1 1129 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 mapdh8h.f . . . . . . . 8 (𝜑𝐹𝐷)
17163ad2ant1 1129 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → 𝐹𝐷)
18 mapdh8h.mn . . . . . . . 8 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
19183ad2ant1 1129 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
20 mapdh9a.x . . . . . . . 8 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
21203ad2ant1 1129 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
22 simp3ll 1240 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → 𝑧 ∈ (𝑉 ∖ { 0 }))
23 simp3rl 1242 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → 𝑤 ∈ (𝑉 ∖ { 0 }))
24 simplrl 775 . . . . . . . . 9 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
25243ad2ant3 1131 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
2625necomd 3074 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
27 simprrl 779 . . . . . . . . 9 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
28273ad2ant3 1131 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
2928necomd 3074 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤}))
30 simplrr 776 . . . . . . . 8 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
31303ad2ant3 1131 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
32 simprrr 780 . . . . . . . 8 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
33323ad2ant3 1131 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
34 mapdh9a.t . . . . . . . 8 (𝜑𝑇𝑉)
35343ad2ant1 1129 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → 𝑇𝑉)
361, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 35mapdh8 38928 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))
37363exp 1115 . . . . 5 (𝜑 → ((𝑧𝑉𝑤𝑉) → (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))))
3837ralrimivv 3193 . . . 4 (𝜑 → ∀𝑧𝑉𝑤𝑉 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)))
3920eldifad 3951 . . . . . . . 8 (𝜑𝑋𝑉)
401, 2, 3, 6, 14, 39, 34dvh3dim 38586 . . . . . . 7 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
41 eqid 2824 . . . . . . . . . . 11 (LSubSp‘𝑈) = (LSubSp‘𝑈)
421, 2, 14dvhlmod 38250 . . . . . . . . . . . 12 (𝜑𝑈 ∈ LMod)
4342ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LMod)
443, 41, 6, 42, 39, 34lspprcl 19753 . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
4544ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
46 simplr 767 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧𝑉)
47 simpr 487 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
485, 41, 43, 45, 46, 47lssneln0 19727 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧 ∈ (𝑉 ∖ { 0 }))
491, 2, 14dvhlvec 38249 . . . . . . . . . . . 12 (𝜑𝑈 ∈ LVec)
5049ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LVec)
5139ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋𝑉)
5234ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑇𝑉)
533, 6, 50, 46, 51, 52, 47lspindpi 19907 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))
5448, 53jca 514 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))))
5554ex 415 . . . . . . . 8 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))))
5655reximdva 3277 . . . . . . 7 (𝜑 → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → ∃𝑧𝑉 (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))))
5740, 56mpd 15 . . . . . 6 (𝜑 → ∃𝑧𝑉 (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))))
5814ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5916ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → 𝐹𝐷)
6018ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
6120ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
62 simplr 767 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → 𝑧𝑉)
63 simprrl 779 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
6463necomd 3074 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
6510, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 58, 59, 60, 61, 62, 64mapdhcl 38867 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) ∈ 𝐷)
66 eqidd 2825 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑧⟩))
67 simprl 769 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → 𝑧 ∈ (𝑉 ∖ { 0 }))
6810, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 58, 59, 60, 61, 67, 65, 64mapdheq 38868 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → ((𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) ↔ ((𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑧)})) = (𝐽‘{(𝐹𝑅(𝐼‘⟨𝑋, 𝐹, 𝑧⟩))}))))
6966, 68mpbid 234 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → ((𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑧)})) = (𝐽‘{(𝐹𝑅(𝐼‘⟨𝑋, 𝐹, 𝑧⟩))})))
7069simpld 497 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}))
7134ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → 𝑇𝑉)
72 simprrr 780 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
7310, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 58, 65, 70, 67, 71, 72mapdhcl 38867 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)
7473ex 415 . . . . . . . 8 ((𝜑𝑧𝑉) → ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷))
7574ancld 553 . . . . . . 7 ((𝜑𝑧𝑉) → ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)))
7675reximdva 3277 . . . . . 6 (𝜑 → (∃𝑧𝑉 (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → ∃𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)))
7757, 76mpd 15 . . . . 5 (𝜑 → ∃𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷))
78 eleq1w 2898 . . . . . . 7 (𝑧 = 𝑤 → (𝑧 ∈ (𝑉 ∖ { 0 }) ↔ 𝑤 ∈ (𝑉 ∖ { 0 })))
79 sneq 4580 . . . . . . . . . 10 (𝑧 = 𝑤 → {𝑧} = {𝑤})
8079fveq2d 6677 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑁‘{𝑧}) = (𝑁‘{𝑤}))
8180neeq1d 3078 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ↔ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋})))
8280neeq1d 3078 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}) ↔ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))
8381, 82anbi12d 632 . . . . . . 7 (𝑧 = 𝑤 → (((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})) ↔ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))
8478, 83anbi12d 632 . . . . . 6 (𝑧 = 𝑤 → ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ↔ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))))
85 oteq1 4815 . . . . . . . 8 (𝑧 = 𝑤 → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)
86 oteq3 4817 . . . . . . . . . 10 (𝑧 = 𝑤 → ⟨𝑋, 𝐹, 𝑧⟩ = ⟨𝑋, 𝐹, 𝑤⟩)
8786fveq2d 6677 . . . . . . . . 9 (𝑧 = 𝑤 → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
8887oteq2d 4819 . . . . . . . 8 (𝑧 = 𝑤 → ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)
8985, 88eqtrd 2859 . . . . . . 7 (𝑧 = 𝑤 → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)
9089fveq2d 6677 . . . . . 6 (𝑧 = 𝑤 → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))
9184, 90reusv3 5309 . . . . 5 (∃𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷) → (∀𝑧𝑉𝑤𝑉 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
9277, 91syl 17 . . . 4 (𝜑 → (∀𝑧𝑉𝑤𝑉 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
9338, 92mpbid 234 . . 3 (𝜑 → ∃𝑦𝐷𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
94 ioran 980 . . . . . . . 8 (¬ (𝑧 ∈ (𝑁‘{𝑋}) ∨ 𝑧 ∈ (𝑁‘{𝑇})) ↔ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})))
95 elun 4128 . . . . . . . 8 (𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) ↔ (𝑧 ∈ (𝑁‘{𝑋}) ∨ 𝑧 ∈ (𝑁‘{𝑇})))
9694, 95xchnxbir 335 . . . . . . 7 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) ↔ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})))
9742ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇}))) → 𝑈 ∈ LMod)
983, 41, 6lspsncl 19752 . . . . . . . . . . . 12 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
9942, 39, 98syl2anc 586 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
10099ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇}))) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
101 simplr 767 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇}))) → 𝑧𝑉)
102 simprl 769 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇}))) → ¬ 𝑧 ∈ (𝑁‘{𝑋}))
1035, 41, 97, 100, 101, 102lssneln0 19727 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇}))) → 𝑧 ∈ (𝑉 ∖ { 0 }))
104103ex 415 . . . . . . . 8 ((𝜑𝑧𝑉) → ((¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑧 ∈ (𝑉 ∖ { 0 })))
10542ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑈 ∈ LMod)
106 simplr 767 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑧𝑉)
10739ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑋𝑉)
108 simpr 487 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → ¬ 𝑧 ∈ (𝑁‘{𝑋}))
1093, 6, 105, 106, 107, 108lspsnne2 19893 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
110109ex 415 . . . . . . . . 9 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋}) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋})))
11142ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑈 ∈ LMod)
112 simplr 767 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑧𝑉)
11334ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑇𝑉)
114 simpr 487 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑇}))
1153, 6, 111, 112, 113, 114lspsnne2 19893 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
116115ex 415 . . . . . . . . 9 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑇}) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))
117110, 116anim12d 610 . . . . . . . 8 ((𝜑𝑧𝑉) → ((¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))))
118104, 117jcad 515 . . . . . . 7 ((𝜑𝑧𝑉) → ((¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))))
11996, 118syl5bi 244 . . . . . 6 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))))
120119imim1d 82 . . . . 5 ((𝜑𝑧𝑉) → (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) → (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
121120ralimdva 3180 . . . 4 (𝜑 → (∀𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) → ∀𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
122121reximdv 3276 . . 3 (𝜑 → (∃𝑦𝐷𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) → ∃𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
12393, 122mpd 15 . 2 (𝜑 → ∃𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
1243, 6, 42, 39, 34lspprid1 19772 . . . . . . . 8 (𝜑𝑋 ∈ (𝑁‘{𝑋, 𝑇}))
12541, 6, 42, 44, 124lspsnel5a 19771 . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑇}))
1263, 6, 42, 39, 34lspprid2 19773 . . . . . . . 8 (𝜑𝑇 ∈ (𝑁‘{𝑋, 𝑇}))
12741, 6, 42, 44, 126lspsnel5a 19771 . . . . . . 7 (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑇}))
128125, 127unssd 4165 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) ⊆ (𝑁‘{𝑋, 𝑇}))
129128ssneld 3972 . . . . 5 (𝜑 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))))
130129reximdv 3276 . . . 4 (𝜑 → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → ∃𝑧𝑉 ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))))
13140, 130mpd 15 . . 3 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})))
132 reusv1 5301 . . 3 (∃𝑧𝑉 ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
133131, 132syl 17 . 2 (𝜑 → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
134123, 133mpbird 259 1 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  wrex 3142  ∃!wreu 3143  Vcvv 3497  cdif 3936  cun 3937  ifcif 4470  {csn 4570  {cpr 4572  cotp 4578  cmpt 5149  cfv 6358  crio 7116  (class class class)co 7159  1st c1st 7690  2nd c2nd 7691  Basecbs 16486  0gc0g 16716  -gcsg 18108  LModclmod 19637  LSubSpclss 19706  LSpanclspn 19746  LVecclvec 19877  HLchlt 36490  LHypclh 37124  DVecHcdvh 38218  LCDualclcd 38726  mapdcmpd 38764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-riotaBAD 36093
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-ot 4579  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-tpos 7895  df-undef 7942  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-0g 16718  df-mre 16860  df-mrc 16861  df-acs 16863  df-proset 17541  df-poset 17559  df-plt 17571  df-lub 17587  df-glb 17588  df-join 17589  df-meet 17590  df-p0 17652  df-p1 17653  df-lat 17659  df-clat 17721  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-subg 18279  df-cntz 18450  df-oppg 18477  df-lsm 18764  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-dvr 19436  df-drng 19507  df-lmod 19639  df-lss 19707  df-lsp 19747  df-lvec 19878  df-lsatoms 36116  df-lshyp 36117  df-lcv 36159  df-lfl 36198  df-lkr 36226  df-ldual 36264  df-oposet 36316  df-ol 36318  df-oml 36319  df-covers 36406  df-ats 36407  df-atl 36438  df-cvlat 36462  df-hlat 36491  df-llines 36638  df-lplanes 36639  df-lvols 36640  df-lines 36641  df-psubsp 36643  df-pmap 36644  df-padd 36936  df-lhyp 37128  df-laut 37129  df-ldil 37244  df-ltrn 37245  df-trl 37299  df-tgrp 37883  df-tendo 37895  df-edring 37897  df-dveca 38143  df-disoa 38169  df-dvech 38219  df-dib 38279  df-dic 38313  df-dih 38369  df-doch 38488  df-djh 38535  df-lcdual 38727  df-mapd 38765
This theorem is referenced by:  hdmap1eulem  38962
  Copyright terms: Public domain W3C validator