Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdheq Structured version   Visualization version   GIF version

Theorem mapdheq 35833
Description: Lemmma for ~? mapdh . The defining equation for h(x,x',y)=y' in part (2) in [Baer] p. 45 line 24. (Contributed by NM, 4-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdhe.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdhe.g (𝜑𝐺𝐷)
mapdh.ne2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
mapdheq (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   ,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐺(𝑥)   𝐻(𝑥,)   𝐼(𝑥,)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdheq
StepHypRef Expression
1 mapdh.q . . . 4 𝑄 = (0g𝐶)
2 mapdh.i . . . 4 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
3 mapdhcl.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
4 mapdhc.f . . . 4 (𝜑𝐹𝐷)
5 mapdhe.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
61, 2, 3, 4, 5mapdhval2 35831 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)}))))
76eqeq1d 2606 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)}))) = 𝐺))
8 mapdh.h . . . 4 𝐻 = (LHyp‘𝐾)
9 mapdh.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
10 mapdh.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 mapdh.v . . . 4 𝑉 = (Base‘𝑈)
12 mapdh.s . . . 4 = (-g𝑈)
13 mapdhc.o . . . 4 0 = (0g𝑈)
14 mapdh.n . . . 4 𝑁 = (LSpan‘𝑈)
15 mapdh.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
16 mapdh.d . . . 4 𝐷 = (Base‘𝐶)
17 mapdh.r . . . 4 𝑅 = (-g𝐶)
18 mapdh.j . . . 4 𝐽 = (LSpan‘𝐶)
19 mapdh.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
20 mapdh.ne2 . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
21 mapdh.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
228, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 3, 5, 4, 20, 21mapdpg 35811 . . 3 (𝜑 → ∃!𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)})))
23 nfv 1828 . . . 4 𝜑
24 nfcvd 2746 . . . 4 (𝜑𝐺)
25 nfvd 1829 . . . 4 (𝜑 → Ⅎ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))
26 mapdhe.g . . . 4 (𝜑𝐺𝐷)
27 sneq 4129 . . . . . . . 8 ( = 𝐺 → {} = {𝐺})
2827fveq2d 6087 . . . . . . 7 ( = 𝐺 → (𝐽‘{}) = (𝐽‘{𝐺}))
2928eqeq2d 2614 . . . . . 6 ( = 𝐺 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ↔ (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺})))
30 oveq2 6530 . . . . . . . . 9 ( = 𝐺 → (𝐹𝑅) = (𝐹𝑅𝐺))
3130sneqd 4131 . . . . . . . 8 ( = 𝐺 → {(𝐹𝑅)} = {(𝐹𝑅𝐺)})
3231fveq2d 6087 . . . . . . 7 ( = 𝐺 → (𝐽‘{(𝐹𝑅)}) = (𝐽‘{(𝐹𝑅𝐺)}))
3332eqeq2d 2614 . . . . . 6 ( = 𝐺 → ((𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)}) ↔ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))
3429, 33anbi12d 742 . . . . 5 ( = 𝐺 → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
3534adantl 480 . . . 4 ((𝜑 = 𝐺) → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
3623, 24, 25, 26, 35riota2df 6504 . . 3 ((𝜑 ∧ ∃!𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)}))) → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})) ↔ (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)}))) = 𝐺))
3722, 36mpdan 698 . 2 (𝜑 → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})) ↔ (𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅)}))) = 𝐺))
387, 37bitr4d 269 1 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1975  wne 2774  ∃!wreu 2892  Vcvv 3167  cdif 3531  ifcif 4030  {csn 4119  cotp 4127  cmpt 4632  cfv 5785  crio 6483  (class class class)co 6522  1st c1st 7029  2nd c2nd 7030  Basecbs 15636  0gc0g 15864  -gcsg 17188  LSpanclspn 18733  HLchlt 33453  LHypclh 34086  DVecHcdvh 35183  LCDualclcd 35691  mapdcmpd 35729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864  ax-riotaBAD 33055
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-ot 4128  df-uni 4362  df-int 4400  df-iun 4446  df-iin 4447  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-of 6767  df-om 6930  df-1st 7031  df-2nd 7032  df-tpos 7211  df-undef 7258  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-1o 7419  df-oadd 7423  df-er 7601  df-map 7718  df-en 7814  df-dom 7815  df-sdom 7816  df-fin 7817  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-nn 10863  df-2 10921  df-3 10922  df-4 10923  df-5 10924  df-6 10925  df-n0 11135  df-z 11206  df-uz 11515  df-fz 12148  df-struct 15638  df-ndx 15639  df-slot 15640  df-base 15641  df-sets 15642  df-ress 15643  df-plusg 15722  df-mulr 15723  df-sca 15725  df-vsca 15726  df-0g 15866  df-mre 16010  df-mrc 16011  df-acs 16013  df-preset 16692  df-poset 16710  df-plt 16722  df-lub 16738  df-glb 16739  df-join 16740  df-meet 16741  df-p0 16803  df-p1 16804  df-lat 16810  df-clat 16872  df-mgm 17006  df-sgrp 17048  df-mnd 17059  df-submnd 17100  df-grp 17189  df-minusg 17190  df-sbg 17191  df-subg 17355  df-cntz 17514  df-oppg 17540  df-lsm 17815  df-cmn 17959  df-abl 17960  df-mgp 18254  df-ur 18266  df-ring 18313  df-oppr 18387  df-dvdsr 18405  df-unit 18406  df-invr 18436  df-dvr 18447  df-drng 18513  df-lmod 18629  df-lss 18695  df-lsp 18734  df-lvec 18865  df-lsatoms 33079  df-lshyp 33080  df-lcv 33122  df-lfl 33161  df-lkr 33189  df-ldual 33227  df-oposet 33279  df-ol 33281  df-oml 33282  df-covers 33369  df-ats 33370  df-atl 33401  df-cvlat 33425  df-hlat 33454  df-llines 33600  df-lplanes 33601  df-lvols 33602  df-lines 33603  df-psubsp 33605  df-pmap 33606  df-padd 33898  df-lhyp 34090  df-laut 34091  df-ldil 34206  df-ltrn 34207  df-trl 34262  df-tgrp 34847  df-tendo 34859  df-edring 34861  df-dveca 35107  df-disoa 35134  df-dvech 35184  df-dib 35244  df-dic 35278  df-dih 35334  df-doch 35453  df-djh 35500  df-lcdual 35692  df-mapd 35730
This theorem is referenced by:  mapdheq2  35834  mapdheq4lem  35836  mapdheq4  35837  mapdh6lem1N  35838  mapdh6lem2N  35839  mapdh6aN  35840  mapdh7fN  35856  mapdh75fN  35860  mapdh8aa  35881  mapdh8d0N  35887  mapdh8d  35888  mapdh9a  35895  mapdh9aOLDN  35896
  Copyright terms: Public domain W3C validator