Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdheq4lem Structured version   Visualization version   GIF version

Theorem mapdheq4lem 36500
 Description: Lemma for mapdheq4 36501. Part (4) in [Baer] p. 46. (Contributed by NM, 12-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdhe4.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdhe.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
mapdh.eg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh.ee (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
Assertion
Ref Expression
mapdheq4lem (𝜑 → (𝑀‘(𝑁‘{(𝑌 𝑍)})) = (𝐽‘{(𝐺𝑅𝐸)}))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   ,𝐺,𝑥   ,𝐸   ,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐸(𝑥)   𝐻(𝑥,)   𝐼(𝑥,)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdheq4lem
StepHypRef Expression
1 mapdh.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdh.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdh.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2621 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 mapdh.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
61, 3, 5dvhlmod 35879 . . . . 5 (𝜑𝑈 ∈ LMod)
7 mapdhe4.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
87eldifad 3567 . . . . . 6 (𝜑𝑌𝑉)
9 mapdh.v . . . . . . 7 𝑉 = (Base‘𝑈)
10 mapdh.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
119, 4, 10lspsncl 18896 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
126, 8, 11syl2anc 692 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
13 mapdhe.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1413eldifad 3567 . . . . . 6 (𝜑𝑍𝑉)
159, 4, 10lspsncl 18896 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
166, 14, 15syl2anc 692 . . . . 5 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
17 eqid 2621 . . . . . 6 (LSSum‘𝑈) = (LSSum‘𝑈)
184, 17lsmcl 19002 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
196, 12, 16, 18syl3anc 1323 . . . 4 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
20 mapdhcl.x . . . . . . . 8 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2120eldifad 3567 . . . . . . 7 (𝜑𝑋𝑉)
22 mapdh.s . . . . . . . 8 = (-g𝑈)
239, 22lmodvsubcl 18829 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
246, 21, 8, 23syl3anc 1323 . . . . . 6 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
259, 4, 10lspsncl 18896 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
266, 24, 25syl2anc 692 . . . . 5 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
279, 22lmodvsubcl 18829 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑍𝑉) → (𝑋 𝑍) ∈ 𝑉)
286, 21, 14, 27syl3anc 1323 . . . . . 6 (𝜑 → (𝑋 𝑍) ∈ 𝑉)
299, 4, 10lspsncl 18896 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 𝑍) ∈ 𝑉) → (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈))
306, 28, 29syl2anc 692 . . . . 5 (𝜑 → (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈))
314, 17lsmcl 19002 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})) ∈ (LSubSp‘𝑈))
326, 26, 30, 31syl3anc 1323 . . . 4 (𝜑 → ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})) ∈ (LSubSp‘𝑈))
331, 2, 3, 4, 5, 19, 32mapdin 36431 . . 3 (𝜑 → (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})))) = ((𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})))))
34 mapdh.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
35 eqid 2621 . . . . . 6 (LSSum‘𝐶) = (LSSum‘𝐶)
361, 2, 3, 4, 17, 34, 35, 5, 12, 16mapdlsm 36433 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))))
37 mapdh.eg . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
38 mapdh.q . . . . . . . . 9 𝑄 = (0g𝐶)
39 mapdh.i . . . . . . . . 9 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
40 mapdhc.o . . . . . . . . 9 0 = (0g𝑈)
41 mapdh.d . . . . . . . . 9 𝐷 = (Base‘𝐶)
42 mapdh.r . . . . . . . . 9 𝑅 = (-g𝐶)
43 mapdh.j . . . . . . . . 9 𝐽 = (LSpan‘𝐶)
44 mapdhc.f . . . . . . . . 9 (𝜑𝐹𝐷)
45 mapdh.mn . . . . . . . . 9 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
461, 3, 5dvhlvec 35878 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ LVec)
47 mapdh.yz . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
48 mapdh.xn . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
499, 40, 10, 46, 8, 13, 21, 47, 48lspindp2 19054 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})))
5049simpld 475 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
5138, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 8, 50mapdhcl 36496 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
5237, 51eqeltrrd 2699 . . . . . . . . 9 (𝜑𝐺𝐷)
5338, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 7, 52, 50mapdheq 36497 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
5437, 53mpbid 222 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))
5554simpld 475 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
56 mapdh.ee . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
579, 40, 10, 46, 7, 14, 21, 47, 48lspindp1 19052 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
5857simpld 475 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
5938, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 14, 58mapdhcl 36496 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
6056, 59eqeltrrd 2699 . . . . . . . . 9 (𝜑𝐸𝐷)
6138, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 13, 60, 58mapdheq 36497 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸 ↔ ((𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐽‘{(𝐹𝑅𝐸)}))))
6256, 61mpbid 222 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐽‘{(𝐹𝑅𝐸)})))
6362simpld 475 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}))
6455, 63oveq12d 6622 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) = ((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})))
6536, 64eqtrd 2655 . . . 4 (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})))
661, 2, 3, 4, 17, 34, 35, 5, 26, 30mapdlsm 36433 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)}))) = ((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{(𝑋 𝑍)}))))
6754simprd 479 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))
6862simprd 479 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐽‘{(𝐹𝑅𝐸)}))
6967, 68oveq12d 6622 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{(𝑋 𝑍)}))) = ((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{(𝐹𝑅𝐸)})))
7066, 69eqtrd 2655 . . . 4 (𝜑 → (𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)}))) = ((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{(𝐹𝑅𝐸)})))
7165, 70ineq12d 3793 . . 3 (𝜑 → ((𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})))) = (((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{(𝐹𝑅𝐸)}))))
7233, 71eqtrd 2655 . 2 (𝜑 → (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})))) = (((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{(𝐹𝑅𝐸)}))))
739, 22, 40, 17, 10, 46, 21, 48, 47, 7, 13baerlem3 36482 . . 3 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)}))))
7473fveq2d 6152 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑌 𝑍)})) = (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})))))
75 eqid 2621 . . 3 (0g𝐶) = (0g𝐶)
761, 34, 5lcdlvec 36360 . . 3 (𝜑𝐶 ∈ LVec)
771, 2, 3, 9, 10, 34, 41, 43, 5, 44, 45, 21, 8, 52, 55, 14, 60, 63, 48mapdindp 36440 . . 3 (𝜑 → ¬ 𝐹 ∈ (𝐽‘{𝐺, 𝐸}))
781, 2, 3, 9, 10, 34, 41, 43, 5, 52, 55, 8, 14, 60, 63, 47mapdncol 36439 . . 3 (𝜑 → (𝐽‘{𝐺}) ≠ (𝐽‘{𝐸}))
791, 2, 3, 9, 10, 34, 41, 43, 5, 52, 55, 40, 75, 7mapdn0 36438 . . 3 (𝜑𝐺 ∈ (𝐷 ∖ {(0g𝐶)}))
801, 2, 3, 9, 10, 34, 41, 43, 5, 60, 63, 40, 75, 13mapdn0 36438 . . 3 (𝜑𝐸 ∈ (𝐷 ∖ {(0g𝐶)}))
8141, 42, 75, 35, 43, 76, 44, 77, 78, 79, 80baerlem3 36482 . 2 (𝜑 → (𝐽‘{(𝐺𝑅𝐸)}) = (((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{(𝐹𝑅𝐸)}))))
8272, 74, 813eqtr4d 2665 1 (𝜑 → (𝑀‘(𝑁‘{(𝑌 𝑍)})) = (𝐽‘{(𝐺𝑅𝐸)}))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  Vcvv 3186   ∖ cdif 3552   ∩ cin 3554  ifcif 4058  {csn 4148  {cpr 4150  ⟨cotp 4156   ↦ cmpt 4673  ‘cfv 5847  ℩crio 6564  (class class class)co 6604  1st c1st 7111  2nd c2nd 7112  Basecbs 15781  0gc0g 16021  -gcsg 17345  LSSumclsm 17970  LModclmod 18784  LSubSpclss 18851  LSpanclspn 18890  HLchlt 34117  LHypclh 34750  DVecHcdvh 35847  LCDualclcd 36355  mapdcmpd 36393 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-riotaBAD 33719 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-ot 4157  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-undef 7344  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-0g 16023  df-mre 16167  df-mrc 16168  df-acs 16170  df-preset 16849  df-poset 16867  df-plt 16879  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-p1 16961  df-lat 16967  df-clat 17029  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-cntz 17671  df-oppg 17697  df-lsm 17972  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-drng 18670  df-lmod 18786  df-lss 18852  df-lsp 18891  df-lvec 19022  df-lsatoms 33743  df-lshyp 33744  df-lcv 33786  df-lfl 33825  df-lkr 33853  df-ldual 33891  df-oposet 33943  df-ol 33945  df-oml 33946  df-covers 34033  df-ats 34034  df-atl 34065  df-cvlat 34089  df-hlat 34118  df-llines 34264  df-lplanes 34265  df-lvols 34266  df-lines 34267  df-psubsp 34269  df-pmap 34270  df-padd 34562  df-lhyp 34754  df-laut 34755  df-ldil 34870  df-ltrn 34871  df-trl 34926  df-tgrp 35511  df-tendo 35523  df-edring 35525  df-dveca 35771  df-disoa 35798  df-dvech 35848  df-dib 35908  df-dic 35942  df-dih 35998  df-doch 36117  df-djh 36164  df-lcdual 36356  df-mapd 36394 This theorem is referenced by:  mapdheq4  36501
 Copyright terms: Public domain W3C validator