MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdom2 Structured version   Visualization version   GIF version

Theorem mapdom2 7993
Description: Order-preserving property of set exponentiation. Theorem 6L(d) of [Enderton] p. 149. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
mapdom2 ((𝐴𝐵 ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) → (𝐶𝑚 𝐴) ≼ (𝐶𝑚 𝐵))

Proof of Theorem mapdom2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 475 . . . . . . . 8 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → 𝐶 = ∅)
21oveq1d 6542 . . . . . . 7 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → (𝐶𝑚 𝐴) = (∅ ↑𝑚 𝐴))
3 simplr 787 . . . . . . . . . 10 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → ¬ (𝐴 = ∅ ∧ 𝐶 = ∅))
4 idd 24 . . . . . . . . . . 11 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → (𝐴 = ∅ → 𝐴 = ∅))
54, 1jctird 564 . . . . . . . . . 10 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → (𝐴 = ∅ → (𝐴 = ∅ ∧ 𝐶 = ∅)))
63, 5mtod 187 . . . . . . . . 9 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → ¬ 𝐴 = ∅)
76neqned 2788 . . . . . . . 8 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → 𝐴 ≠ ∅)
8 map0b 7759 . . . . . . . 8 (𝐴 ≠ ∅ → (∅ ↑𝑚 𝐴) = ∅)
97, 8syl 17 . . . . . . 7 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → (∅ ↑𝑚 𝐴) = ∅)
102, 9eqtrd 2643 . . . . . 6 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → (𝐶𝑚 𝐴) = ∅)
11 ovex 6555 . . . . . . 7 (𝐶𝑚 𝐵) ∈ V
12110dom 7952 . . . . . 6 ∅ ≼ (𝐶𝑚 𝐵)
1310, 12syl6eqbr 4616 . . . . 5 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 = ∅) → (𝐶𝑚 𝐴) ≼ (𝐶𝑚 𝐵))
14 simpll 785 . . . . . . . 8 (((𝐴𝐵𝐶 ∈ V) ∧ 𝐶 ≠ ∅) → 𝐴𝐵)
15 reldom 7824 . . . . . . . . . . 11 Rel ≼
1615brrelex2i 5073 . . . . . . . . . 10 (𝐴𝐵𝐵 ∈ V)
1716ad2antrr 757 . . . . . . . . 9 (((𝐴𝐵𝐶 ∈ V) ∧ 𝐶 ≠ ∅) → 𝐵 ∈ V)
18 domeng 7832 . . . . . . . . 9 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
1917, 18syl 17 . . . . . . . 8 (((𝐴𝐵𝐶 ∈ V) ∧ 𝐶 ≠ ∅) → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
2014, 19mpbid 220 . . . . . . 7 (((𝐴𝐵𝐶 ∈ V) ∧ 𝐶 ≠ ∅) → ∃𝑥(𝐴𝑥𝑥𝐵))
21 enrefg 7850 . . . . . . . . . . . 12 (𝐶 ∈ V → 𝐶𝐶)
2221ad2antlr 758 . . . . . . . . . . 11 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → 𝐶𝐶)
23 simprrl 799 . . . . . . . . . . 11 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → 𝐴𝑥)
24 mapen 7986 . . . . . . . . . . 11 ((𝐶𝐶𝐴𝑥) → (𝐶𝑚 𝐴) ≈ (𝐶𝑚 𝑥))
2522, 23, 24syl2anc 690 . . . . . . . . . 10 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶𝑚 𝐴) ≈ (𝐶𝑚 𝑥))
26 ovex 6555 . . . . . . . . . . . . 13 (𝐶𝑚 𝑥) ∈ V
2726a1i 11 . . . . . . . . . . . 12 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶𝑚 𝑥) ∈ V)
28 ovex 6555 . . . . . . . . . . . . 13 (𝐶𝑚 (𝐵𝑥)) ∈ V
2928a1i 11 . . . . . . . . . . . 12 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶𝑚 (𝐵𝑥)) ∈ V)
30 simprl 789 . . . . . . . . . . . . 13 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → 𝐶 ≠ ∅)
31 simplr 787 . . . . . . . . . . . . . 14 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → 𝐶 ∈ V)
3216ad2antrr 757 . . . . . . . . . . . . . . 15 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → 𝐵 ∈ V)
33 difexg 4730 . . . . . . . . . . . . . . 15 (𝐵 ∈ V → (𝐵𝑥) ∈ V)
3432, 33syl 17 . . . . . . . . . . . . . 14 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐵𝑥) ∈ V)
35 map0g 7760 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ V ∧ (𝐵𝑥) ∈ V) → ((𝐶𝑚 (𝐵𝑥)) = ∅ ↔ (𝐶 = ∅ ∧ (𝐵𝑥) ≠ ∅)))
36 simpl 471 . . . . . . . . . . . . . . . 16 ((𝐶 = ∅ ∧ (𝐵𝑥) ≠ ∅) → 𝐶 = ∅)
3735, 36syl6bi 241 . . . . . . . . . . . . . . 15 ((𝐶 ∈ V ∧ (𝐵𝑥) ∈ V) → ((𝐶𝑚 (𝐵𝑥)) = ∅ → 𝐶 = ∅))
3837necon3d 2802 . . . . . . . . . . . . . 14 ((𝐶 ∈ V ∧ (𝐵𝑥) ∈ V) → (𝐶 ≠ ∅ → (𝐶𝑚 (𝐵𝑥)) ≠ ∅))
3931, 34, 38syl2anc 690 . . . . . . . . . . . . 13 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶 ≠ ∅ → (𝐶𝑚 (𝐵𝑥)) ≠ ∅))
4030, 39mpd 15 . . . . . . . . . . . 12 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶𝑚 (𝐵𝑥)) ≠ ∅)
41 xpdom3 7920 . . . . . . . . . . . 12 (((𝐶𝑚 𝑥) ∈ V ∧ (𝐶𝑚 (𝐵𝑥)) ∈ V ∧ (𝐶𝑚 (𝐵𝑥)) ≠ ∅) → (𝐶𝑚 𝑥) ≼ ((𝐶𝑚 𝑥) × (𝐶𝑚 (𝐵𝑥))))
4227, 29, 40, 41syl3anc 1317 . . . . . . . . . . 11 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶𝑚 𝑥) ≼ ((𝐶𝑚 𝑥) × (𝐶𝑚 (𝐵𝑥))))
43 vex 3175 . . . . . . . . . . . . . . 15 𝑥 ∈ V
4443a1i 11 . . . . . . . . . . . . . 14 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → 𝑥 ∈ V)
45 disjdif 3991 . . . . . . . . . . . . . . 15 (𝑥 ∩ (𝐵𝑥)) = ∅
4645a1i 11 . . . . . . . . . . . . . 14 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝑥 ∩ (𝐵𝑥)) = ∅)
47 mapunen 7991 . . . . . . . . . . . . . 14 (((𝑥 ∈ V ∧ (𝐵𝑥) ∈ V ∧ 𝐶 ∈ V) ∧ (𝑥 ∩ (𝐵𝑥)) = ∅) → (𝐶𝑚 (𝑥 ∪ (𝐵𝑥))) ≈ ((𝐶𝑚 𝑥) × (𝐶𝑚 (𝐵𝑥))))
4844, 34, 31, 46, 47syl31anc 1320 . . . . . . . . . . . . 13 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶𝑚 (𝑥 ∪ (𝐵𝑥))) ≈ ((𝐶𝑚 𝑥) × (𝐶𝑚 (𝐵𝑥))))
4948ensymd 7870 . . . . . . . . . . . 12 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → ((𝐶𝑚 𝑥) × (𝐶𝑚 (𝐵𝑥))) ≈ (𝐶𝑚 (𝑥 ∪ (𝐵𝑥))))
50 simprrr 800 . . . . . . . . . . . . . 14 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → 𝑥𝐵)
51 undif 4000 . . . . . . . . . . . . . 14 (𝑥𝐵 ↔ (𝑥 ∪ (𝐵𝑥)) = 𝐵)
5250, 51sylib 206 . . . . . . . . . . . . 13 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝑥 ∪ (𝐵𝑥)) = 𝐵)
5352oveq2d 6543 . . . . . . . . . . . 12 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶𝑚 (𝑥 ∪ (𝐵𝑥))) = (𝐶𝑚 𝐵))
5449, 53breqtrd 4603 . . . . . . . . . . 11 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → ((𝐶𝑚 𝑥) × (𝐶𝑚 (𝐵𝑥))) ≈ (𝐶𝑚 𝐵))
55 domentr 7878 . . . . . . . . . . 11 (((𝐶𝑚 𝑥) ≼ ((𝐶𝑚 𝑥) × (𝐶𝑚 (𝐵𝑥))) ∧ ((𝐶𝑚 𝑥) × (𝐶𝑚 (𝐵𝑥))) ≈ (𝐶𝑚 𝐵)) → (𝐶𝑚 𝑥) ≼ (𝐶𝑚 𝐵))
5642, 54, 55syl2anc 690 . . . . . . . . . 10 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶𝑚 𝑥) ≼ (𝐶𝑚 𝐵))
57 endomtr 7877 . . . . . . . . . 10 (((𝐶𝑚 𝐴) ≈ (𝐶𝑚 𝑥) ∧ (𝐶𝑚 𝑥) ≼ (𝐶𝑚 𝐵)) → (𝐶𝑚 𝐴) ≼ (𝐶𝑚 𝐵))
5825, 56, 57syl2anc 690 . . . . . . . . 9 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐶 ≠ ∅ ∧ (𝐴𝑥𝑥𝐵))) → (𝐶𝑚 𝐴) ≼ (𝐶𝑚 𝐵))
5958expr 640 . . . . . . . 8 (((𝐴𝐵𝐶 ∈ V) ∧ 𝐶 ≠ ∅) → ((𝐴𝑥𝑥𝐵) → (𝐶𝑚 𝐴) ≼ (𝐶𝑚 𝐵)))
6059exlimdv 1847 . . . . . . 7 (((𝐴𝐵𝐶 ∈ V) ∧ 𝐶 ≠ ∅) → (∃𝑥(𝐴𝑥𝑥𝐵) → (𝐶𝑚 𝐴) ≼ (𝐶𝑚 𝐵)))
6120, 60mpd 15 . . . . . 6 (((𝐴𝐵𝐶 ∈ V) ∧ 𝐶 ≠ ∅) → (𝐶𝑚 𝐴) ≼ (𝐶𝑚 𝐵))
6261adantlr 746 . . . . 5 ((((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 ≠ ∅) → (𝐶𝑚 𝐴) ≼ (𝐶𝑚 𝐵))
6313, 62pm2.61dane 2868 . . . 4 (((𝐴𝐵𝐶 ∈ V) ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) → (𝐶𝑚 𝐴) ≼ (𝐶𝑚 𝐵))
6463an32s 841 . . 3 (((𝐴𝐵 ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) ∧ 𝐶 ∈ V) → (𝐶𝑚 𝐴) ≼ (𝐶𝑚 𝐵))
6564ex 448 . 2 ((𝐴𝐵 ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) → (𝐶 ∈ V → (𝐶𝑚 𝐴) ≼ (𝐶𝑚 𝐵)))
66 reldmmap 7730 . . . 4 Rel dom ↑𝑚
6766ovprc1 6560 . . 3 𝐶 ∈ V → (𝐶𝑚 𝐴) = ∅)
6867, 12syl6eqbr 4616 . 2 𝐶 ∈ V → (𝐶𝑚 𝐴) ≼ (𝐶𝑚 𝐵))
6965, 68pm2.61d1 169 1 ((𝐴𝐵 ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) → (𝐶𝑚 𝐴) ≼ (𝐶𝑚 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wex 1694  wcel 1976  wne 2779  Vcvv 3172  cdif 3536  cun 3537  cin 3538  wss 3539  c0 3873   class class class wbr 4577   × cxp 5026  (class class class)co 6527  𝑚 cmap 7721  cen 7815  cdom 7816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7036  df-2nd 7037  df-er 7606  df-map 7723  df-en 7819  df-dom 7820
This theorem is referenced by:  mapdom3  7994  cfpwsdom  9262  hauspwdom  21056
  Copyright terms: Public domain W3C validator