Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem13 Structured version   Visualization version   GIF version

Theorem mapdpglem13 36492
Description: Lemma for mapdpg 36514. (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem12.yn (𝜑𝑌𝑄)
mapdpglem12.g0 (𝜑𝑧 = (0g𝐶))
Assertion
Ref Expression
mapdpglem13 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ⊆ (𝑁‘{𝑋}))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑄(𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔)

Proof of Theorem mapdpglem13
StepHypRef Expression
1 mapdpglem4.jt . . 3 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
2 eqid 2621 . . . 4 (LSubSp‘𝐶) = (LSubSp‘𝐶)
3 mapdpglem2.j . . . 4 𝐽 = (LSpan‘𝐶)
4 mapdpglem.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 mapdpglem.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 mapdpglem.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
74, 5, 6lcdlmod 36400 . . . 4 (𝜑𝐶 ∈ LMod)
8 mapdpglem.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
9 mapdpglem.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 eqid 2621 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
114, 9, 6dvhlmod 35918 . . . . . 6 (𝜑𝑈 ∈ LMod)
12 mapdpglem.x . . . . . 6 (𝜑𝑋𝑉)
13 mapdpglem.v . . . . . . 7 𝑉 = (Base‘𝑈)
14 mapdpglem.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
1513, 10, 14lspsncl 18917 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
1611, 12, 15syl2anc 692 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
174, 8, 9, 10, 5, 2, 6, 16mapdcl2 36464 . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) ∈ (LSubSp‘𝐶))
18 mapdpglem.s . . . . 5 = (-g𝑈)
19 mapdpglem.y . . . . 5 (𝜑𝑌𝑉)
20 mapdpglem1.p . . . . 5 = (LSSum‘𝐶)
21 mapdpglem3.f . . . . 5 𝐹 = (Base‘𝐶)
22 mapdpglem3.te . . . . 5 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
23 mapdpglem3.a . . . . 5 𝐴 = (Scalar‘𝑈)
24 mapdpglem3.b . . . . 5 𝐵 = (Base‘𝐴)
25 mapdpglem3.t . . . . 5 · = ( ·𝑠𝐶)
26 mapdpglem3.r . . . . 5 𝑅 = (-g𝐶)
27 mapdpglem3.g . . . . 5 (𝜑𝐺𝐹)
28 mapdpglem3.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
29 mapdpglem4.q . . . . 5 𝑄 = (0g𝑈)
30 mapdpglem.ne . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
31 mapdpglem4.z . . . . 5 0 = (0g𝐴)
32 mapdpglem4.g4 . . . . 5 (𝜑𝑔𝐵)
33 mapdpglem4.z4 . . . . 5 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
34 mapdpglem4.t4 . . . . 5 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
35 mapdpglem4.xn . . . . 5 (𝜑𝑋𝑄)
36 mapdpglem12.yn . . . . 5 (𝜑𝑌𝑄)
37 mapdpglem12.g0 . . . . 5 (𝜑𝑧 = (0g𝐶))
384, 8, 9, 13, 18, 14, 5, 6, 12, 19, 20, 3, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 31, 32, 33, 34, 35, 36, 37mapdpglem12 36491 . . . 4 (𝜑𝑡 ∈ (𝑀‘(𝑁‘{𝑋})))
392, 3, 7, 17, 38lspsnel5a 18936 . . 3 (𝜑 → (𝐽‘{𝑡}) ⊆ (𝑀‘(𝑁‘{𝑋})))
401, 39eqsstrd 3624 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) ⊆ (𝑀‘(𝑁‘{𝑋})))
4113, 18lmodvsubcl 18848 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
4211, 12, 19, 41syl3anc 1323 . . . 4 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
4313, 10, 14lspsncl 18917 . . . 4 ((𝑈 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
4411, 42, 43syl2anc 692 . . 3 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
454, 9, 10, 8, 6, 44, 16mapdord 36446 . 2 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 𝑌)})) ⊆ (𝑀‘(𝑁‘{𝑋})) ↔ (𝑁‘{(𝑋 𝑌)}) ⊆ (𝑁‘{𝑋})))
4640, 45mpbid 222 1 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ⊆ (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wss 3560  {csn 4155  cfv 5857  (class class class)co 6615  Basecbs 15800  Scalarcsca 15884   ·𝑠 cvsca 15885  0gc0g 16040  -gcsg 17364  LSSumclsm 17989  LModclmod 18803  LSubSpclss 18872  LSpanclspn 18911  HLchlt 34156  LHypclh 34789  DVecHcdvh 35886  LCDualclcd 36394  mapdcmpd 36432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-riotaBAD 33758
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-tpos 7312  df-undef 7359  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-sca 15897  df-vsca 15898  df-0g 16042  df-mre 16186  df-mrc 16187  df-acs 16189  df-preset 16868  df-poset 16886  df-plt 16898  df-lub 16914  df-glb 16915  df-join 16916  df-meet 16917  df-p0 16979  df-p1 16980  df-lat 16986  df-clat 17048  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-grp 17365  df-minusg 17366  df-sbg 17367  df-subg 17531  df-cntz 17690  df-oppg 17716  df-lsm 17991  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-oppr 18563  df-dvdsr 18581  df-unit 18582  df-invr 18612  df-dvr 18623  df-drng 18689  df-lmod 18805  df-lss 18873  df-lsp 18912  df-lvec 19043  df-lsatoms 33782  df-lshyp 33783  df-lcv 33825  df-lfl 33864  df-lkr 33892  df-ldual 33930  df-oposet 33982  df-ol 33984  df-oml 33985  df-covers 34072  df-ats 34073  df-atl 34104  df-cvlat 34128  df-hlat 34157  df-llines 34303  df-lplanes 34304  df-lvols 34305  df-lines 34306  df-psubsp 34308  df-pmap 34309  df-padd 34601  df-lhyp 34793  df-laut 34794  df-ldil 34909  df-ltrn 34910  df-trl 34965  df-tgrp 35550  df-tendo 35562  df-edring 35564  df-dveca 35810  df-disoa 35837  df-dvech 35887  df-dib 35947  df-dic 35981  df-dih 36037  df-doch 36156  df-djh 36203  df-lcdual 36395  df-mapd 36433
This theorem is referenced by:  mapdpglem14  36493
  Copyright terms: Public domain W3C validator