Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem30 Structured version   Visualization version   GIF version

Theorem mapdpglem30 38832
Description: Lemma for mapdpg 38836. Baer p. 45 line 18: "Hence we deduce (from mapdpglem28 38831, using lvecindp2 19905) that v = 1 and v = u...". TODO: would it be shorter to have only the 𝑣 = (1r𝐴) part and use mapdpglem28.u2 in mapdpglem31 38833? (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h 𝐻 = (LHyp‘𝐾)
mapdpg.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpg.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpg.v 𝑉 = (Base‘𝑈)
mapdpg.s = (-g𝑈)
mapdpg.z 0 = (0g𝑈)
mapdpg.n 𝑁 = (LSpan‘𝑈)
mapdpg.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpg.f 𝐹 = (Base‘𝐶)
mapdpg.r 𝑅 = (-g𝐶)
mapdpg.j 𝐽 = (LSpan‘𝐶)
mapdpg.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpg.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdpg.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdpg.g (𝜑𝐺𝐹)
mapdpg.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpg.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpgem25.h1 (𝜑 → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
mapdpgem25.i1 (𝜑 → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
mapdpglem26.a 𝐴 = (Scalar‘𝑈)
mapdpglem26.b 𝐵 = (Base‘𝐴)
mapdpglem26.t · = ( ·𝑠𝐶)
mapdpglem26.o 𝑂 = (0g𝐴)
mapdpglem28.ve (𝜑𝑣𝐵)
mapdpglem28.u1 (𝜑 = (𝑢 · 𝑖))
mapdpglem28.u2 (𝜑 → (𝐺𝑅) = (𝑣 · (𝐺𝑅𝑖)))
mapdpglem28.ue (𝜑𝑢𝐵)
Assertion
Ref Expression
mapdpglem30 (𝜑 → (𝑣 = (1r𝐴) ∧ 𝑣 = 𝑢))
Distinct variable groups:   ,𝑖,𝑢,𝑣   𝑢,𝐵,𝑣   𝑢,𝐶,𝑣   𝑢,𝑂,𝑣   𝑢, · ,𝑣   𝑣,𝐺   𝑣,𝑅
Allowed substitution hints:   𝜑(𝑣,𝑢,,𝑖)   𝐴(𝑣,𝑢,,𝑖)   𝐵(,𝑖)   𝐶(,𝑖)   𝑅(𝑢,,𝑖)   · (,𝑖)   𝑈(𝑣,𝑢,,𝑖)   𝐹(𝑣,𝑢,,𝑖)   𝐺(𝑢,,𝑖)   𝐻(𝑣,𝑢,,𝑖)   𝐽(𝑣,𝑢,,𝑖)   𝐾(𝑣,𝑢,,𝑖)   𝑀(𝑣,𝑢,,𝑖)   (𝑣,𝑢,,𝑖)   𝑁(𝑣,𝑢,,𝑖)   𝑂(,𝑖)   𝑉(𝑣,𝑢,,𝑖)   𝑊(𝑣,𝑢,,𝑖)   𝑋(𝑣,𝑢,,𝑖)   𝑌(𝑣,𝑢,,𝑖)   0 (𝑣,𝑢,,𝑖)

Proof of Theorem mapdpglem30
StepHypRef Expression
1 mapdpg.f . . 3 𝐹 = (Base‘𝐶)
2 eqid 2821 . . 3 (+g𝐶) = (+g𝐶)
3 eqid 2821 . . 3 (Scalar‘𝐶) = (Scalar‘𝐶)
4 eqid 2821 . . 3 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
5 mapdpglem26.t . . 3 · = ( ·𝑠𝐶)
6 eqid 2821 . . 3 (0g𝐶) = (0g𝐶)
7 mapdpg.j . . 3 𝐽 = (LSpan‘𝐶)
8 mapdpg.h . . . 4 𝐻 = (LHyp‘𝐾)
9 mapdpg.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
10 mapdpg.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
118, 9, 10lcdlvec 38721 . . 3 (𝜑𝐶 ∈ LVec)
12 mapdpg.g . . . 4 (𝜑𝐺𝐹)
13 mapdpg.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
14 mapdpg.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
15 mapdpg.v . . . . 5 𝑉 = (Base‘𝑈)
16 mapdpg.s . . . . 5 = (-g𝑈)
17 mapdpg.z . . . . 5 0 = (0g𝑈)
18 mapdpg.n . . . . 5 𝑁 = (LSpan‘𝑈)
19 mapdpg.r . . . . 5 𝑅 = (-g𝐶)
20 mapdpg.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
21 mapdpg.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
22 mapdpg.ne . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
23 mapdpg.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
248, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23mapdpglem30a 38825 . . . 4 (𝜑𝐺 ≠ (0g𝐶))
25 eldifsn 4712 . . . 4 (𝐺 ∈ (𝐹 ∖ {(0g𝐶)}) ↔ (𝐺𝐹𝐺 ≠ (0g𝐶)))
2612, 24, 25sylanbrc 585 . . 3 (𝜑𝐺 ∈ (𝐹 ∖ {(0g𝐶)}))
27 mapdpgem25.i1 . . . . 5 (𝜑 → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
2827simpld 497 . . . 4 (𝜑𝑖𝐹)
29 mapdpgem25.h1 . . . . 5 (𝜑 → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
308, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23, 29, 27mapdpglem30b 38826 . . . 4 (𝜑𝑖 ≠ (0g𝐶))
31 eldifsn 4712 . . . 4 (𝑖 ∈ (𝐹 ∖ {(0g𝐶)}) ↔ (𝑖𝐹𝑖 ≠ (0g𝐶)))
3228, 30, 31sylanbrc 585 . . 3 (𝜑𝑖 ∈ (𝐹 ∖ {(0g𝐶)}))
33 mapdpglem28.ve . . . 4 (𝜑𝑣𝐵)
34 mapdpglem26.a . . . . 5 𝐴 = (Scalar‘𝑈)
35 mapdpglem26.b . . . . 5 𝐵 = (Base‘𝐴)
368, 14, 34, 35, 9, 3, 4, 10lcdsbase 38730 . . . 4 (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵)
3733, 36eleqtrrd 2916 . . 3 (𝜑𝑣 ∈ (Base‘(Scalar‘𝐶)))
388, 14, 10dvhlmod 38240 . . . . . 6 (𝜑𝑈 ∈ LMod)
3934lmodring 19636 . . . . . 6 (𝑈 ∈ LMod → 𝐴 ∈ Ring)
4038, 39syl 17 . . . . 5 (𝜑𝐴 ∈ Ring)
41 ringgrp 19296 . . . . . . 7 (𝐴 ∈ Ring → 𝐴 ∈ Grp)
4240, 41syl 17 . . . . . 6 (𝜑𝐴 ∈ Grp)
43 eqid 2821 . . . . . . . 8 (1r𝐴) = (1r𝐴)
4435, 43ringidcl 19312 . . . . . . 7 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
4540, 44syl 17 . . . . . 6 (𝜑 → (1r𝐴) ∈ 𝐵)
46 eqid 2821 . . . . . . 7 (invg𝐴) = (invg𝐴)
4735, 46grpinvcl 18145 . . . . . 6 ((𝐴 ∈ Grp ∧ (1r𝐴) ∈ 𝐵) → ((invg𝐴)‘(1r𝐴)) ∈ 𝐵)
4842, 45, 47syl2anc 586 . . . . 5 (𝜑 → ((invg𝐴)‘(1r𝐴)) ∈ 𝐵)
49 eqid 2821 . . . . . 6 (.r𝐴) = (.r𝐴)
5035, 49ringcl 19305 . . . . 5 ((𝐴 ∈ Ring ∧ 𝑣𝐵 ∧ ((invg𝐴)‘(1r𝐴)) ∈ 𝐵) → (𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) ∈ 𝐵)
5140, 33, 48, 50syl3anc 1367 . . . 4 (𝜑 → (𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) ∈ 𝐵)
5251, 36eleqtrrd 2916 . . 3 (𝜑 → (𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) ∈ (Base‘(Scalar‘𝐶)))
5345, 36eleqtrrd 2916 . . 3 (𝜑 → (1r𝐴) ∈ (Base‘(Scalar‘𝐶)))
54 mapdpglem28.ue . . . . 5 (𝜑𝑢𝐵)
5535, 49ringcl 19305 . . . . 5 ((𝐴 ∈ Ring ∧ 𝑢𝐵 ∧ ((invg𝐴)‘(1r𝐴)) ∈ 𝐵) → (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) ∈ 𝐵)
5640, 54, 48, 55syl3anc 1367 . . . 4 (𝜑 → (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) ∈ 𝐵)
5756, 36eleqtrrd 2916 . . 3 (𝜑 → (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) ∈ (Base‘(Scalar‘𝐶)))
58 mapdpglem26.o . . . 4 𝑂 = (0g𝐴)
59 mapdpglem28.u1 . . . 4 (𝜑 = (𝑢 · 𝑖))
60 mapdpglem28.u2 . . . 4 (𝜑 → (𝐺𝑅) = (𝑣 · (𝐺𝑅𝑖)))
618, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23, 29, 27, 34, 35, 5, 58, 33, 59, 60mapdpglem29 38830 . . 3 (𝜑 → (𝐽‘{𝐺}) ≠ (𝐽‘{𝑖}))
628, 14, 34, 35, 49, 9, 1, 5, 10, 48, 54, 28lcdvsass 38737 . . . . 5 (𝜑 → ((𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖) = (((invg𝐴)‘(1r𝐴)) · (𝑢 · 𝑖)))
6362oveq2d 7166 . . . 4 (𝜑 → (((1r𝐴) · 𝐺)(+g𝐶)((𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖)) = (((1r𝐴) · 𝐺)(+g𝐶)(((invg𝐴)‘(1r𝐴)) · (𝑢 · 𝑖))))
648, 14, 34, 35, 9, 1, 5, 10, 45, 12lcdvscl 38735 . . . . 5 (𝜑 → ((1r𝐴) · 𝐺) ∈ 𝐹)
658, 14, 34, 35, 9, 1, 5, 10, 54, 28lcdvscl 38735 . . . . 5 (𝜑 → (𝑢 · 𝑖) ∈ 𝐹)
668, 14, 34, 46, 43, 9, 1, 2, 5, 19, 10, 64, 65lcdvsub 38747 . . . 4 (𝜑 → (((1r𝐴) · 𝐺)𝑅(𝑢 · 𝑖)) = (((1r𝐴) · 𝐺)(+g𝐶)(((invg𝐴)‘(1r𝐴)) · (𝑢 · 𝑖))))
678, 14, 34, 35, 49, 9, 1, 5, 10, 48, 33, 28lcdvsass 38737 . . . . . 6 (𝜑 → ((𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖) = (((invg𝐴)‘(1r𝐴)) · (𝑣 · 𝑖)))
6867oveq2d 7166 . . . . 5 (𝜑 → ((𝑣 · 𝐺)(+g𝐶)((𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖)) = ((𝑣 · 𝐺)(+g𝐶)(((invg𝐴)‘(1r𝐴)) · (𝑣 · 𝑖))))
698, 14, 34, 35, 9, 1, 5, 10, 33, 12lcdvscl 38735 . . . . . 6 (𝜑 → (𝑣 · 𝐺) ∈ 𝐹)
708, 14, 34, 35, 9, 1, 5, 10, 33, 28lcdvscl 38735 . . . . . 6 (𝜑 → (𝑣 · 𝑖) ∈ 𝐹)
718, 14, 34, 46, 43, 9, 1, 2, 5, 19, 10, 69, 70lcdvsub 38747 . . . . 5 (𝜑 → ((𝑣 · 𝐺)𝑅(𝑣 · 𝑖)) = ((𝑣 · 𝐺)(+g𝐶)(((invg𝐴)‘(1r𝐴)) · (𝑣 · 𝑖))))
728, 13, 14, 15, 16, 17, 18, 9, 1, 19, 7, 10, 20, 21, 12, 22, 23, 29, 27, 34, 35, 5, 58, 33, 59, 60mapdpglem28 38831 . . . . . 6 (𝜑 → ((𝑣 · 𝐺)𝑅(𝑣 · 𝑖)) = (𝐺𝑅(𝑢 · 𝑖)))
73 eqid 2821 . . . . . . . . . 10 (1r‘(Scalar‘𝐶)) = (1r‘(Scalar‘𝐶))
748, 14, 34, 43, 9, 3, 73, 10lcd1 38739 . . . . . . . . 9 (𝜑 → (1r‘(Scalar‘𝐶)) = (1r𝐴))
7574oveq1d 7165 . . . . . . . 8 (𝜑 → ((1r‘(Scalar‘𝐶)) · 𝐺) = ((1r𝐴) · 𝐺))
768, 9, 10lcdlmod 38722 . . . . . . . . 9 (𝜑𝐶 ∈ LMod)
771, 3, 5, 73lmodvs1 19656 . . . . . . . . 9 ((𝐶 ∈ LMod ∧ 𝐺𝐹) → ((1r‘(Scalar‘𝐶)) · 𝐺) = 𝐺)
7876, 12, 77syl2anc 586 . . . . . . . 8 (𝜑 → ((1r‘(Scalar‘𝐶)) · 𝐺) = 𝐺)
7975, 78eqtr3d 2858 . . . . . . 7 (𝜑 → ((1r𝐴) · 𝐺) = 𝐺)
8079oveq1d 7165 . . . . . 6 (𝜑 → (((1r𝐴) · 𝐺)𝑅(𝑢 · 𝑖)) = (𝐺𝑅(𝑢 · 𝑖)))
8172, 80eqtr4d 2859 . . . . 5 (𝜑 → ((𝑣 · 𝐺)𝑅(𝑣 · 𝑖)) = (((1r𝐴) · 𝐺)𝑅(𝑢 · 𝑖)))
8268, 71, 813eqtr2rd 2863 . . . 4 (𝜑 → (((1r𝐴) · 𝐺)𝑅(𝑢 · 𝑖)) = ((𝑣 · 𝐺)(+g𝐶)((𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖)))
8363, 66, 823eqtr2rd 2863 . . 3 (𝜑 → ((𝑣 · 𝐺)(+g𝐶)((𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖)) = (((1r𝐴) · 𝐺)(+g𝐶)((𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) · 𝑖)))
841, 2, 3, 4, 5, 6, 7, 11, 26, 32, 37, 52, 53, 57, 61, 83lvecindp2 19905 . 2 (𝜑 → (𝑣 = (1r𝐴) ∧ (𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) = (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴)))))
8535, 49, 43, 46, 40, 33rngnegr 19339 . . . . 5 (𝜑 → (𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) = ((invg𝐴)‘𝑣))
8635, 49, 43, 46, 40, 54rngnegr 19339 . . . . 5 (𝜑 → (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) = ((invg𝐴)‘𝑢))
8785, 86eqeq12d 2837 . . . 4 (𝜑 → ((𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) = (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) ↔ ((invg𝐴)‘𝑣) = ((invg𝐴)‘𝑢)))
8835, 46, 42, 33, 54grpinv11 18162 . . . 4 (𝜑 → (((invg𝐴)‘𝑣) = ((invg𝐴)‘𝑢) ↔ 𝑣 = 𝑢))
8987, 88bitrd 281 . . 3 (𝜑 → ((𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) = (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴))) ↔ 𝑣 = 𝑢))
9089anbi2d 630 . 2 (𝜑 → ((𝑣 = (1r𝐴) ∧ (𝑣(.r𝐴)((invg𝐴)‘(1r𝐴))) = (𝑢(.r𝐴)((invg𝐴)‘(1r𝐴)))) ↔ (𝑣 = (1r𝐴) ∧ 𝑣 = 𝑢)))
9184, 90mpbid 234 1 (𝜑 → (𝑣 = (1r𝐴) ∧ 𝑣 = 𝑢))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  cdif 3932  {csn 4560  cfv 6349  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  .rcmulr 16560  Scalarcsca 16562   ·𝑠 cvsca 16563  0gc0g 16707  Grpcgrp 18097  invgcminusg 18098  -gcsg 18099  1rcur 19245  Ringcrg 19291  LModclmod 19628  LSpanclspn 19737  HLchlt 36480  LHypclh 37114  DVecHcdvh 38208  LCDualclcd 38716  mapdcmpd 38754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-riotaBAD 36083
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-undef 7933  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-0g 16709  df-mre 16851  df-mrc 16852  df-acs 16854  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-p1 17644  df-lat 17650  df-clat 17712  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-cntz 18441  df-oppg 18468  df-lsm 18755  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19498  df-lmod 19630  df-lss 19698  df-lsp 19738  df-lvec 19869  df-lsatoms 36106  df-lshyp 36107  df-lcv 36149  df-lfl 36188  df-lkr 36216  df-ldual 36254  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-llines 36628  df-lplanes 36629  df-lvols 36630  df-lines 36631  df-psubsp 36633  df-pmap 36634  df-padd 36926  df-lhyp 37118  df-laut 37119  df-ldil 37234  df-ltrn 37235  df-trl 37289  df-tgrp 37873  df-tendo 37885  df-edring 37887  df-dveca 38133  df-disoa 38159  df-dvech 38209  df-dib 38269  df-dic 38303  df-dih 38359  df-doch 38478  df-djh 38525  df-lcdual 38717  df-mapd 38755
This theorem is referenced by:  mapdpglem31  38833
  Copyright terms: Public domain W3C validator