Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem31 Structured version   Visualization version   GIF version

Theorem mapdpglem31 38841
Description: Lemma for mapdpg 38844. Baer p. 45 line 19: "...and we have consequently that y' = y'', as we claimed." (Contributed by NM, 23-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h 𝐻 = (LHyp‘𝐾)
mapdpg.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpg.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpg.v 𝑉 = (Base‘𝑈)
mapdpg.s = (-g𝑈)
mapdpg.z 0 = (0g𝑈)
mapdpg.n 𝑁 = (LSpan‘𝑈)
mapdpg.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpg.f 𝐹 = (Base‘𝐶)
mapdpg.r 𝑅 = (-g𝐶)
mapdpg.j 𝐽 = (LSpan‘𝐶)
mapdpg.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpg.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdpg.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdpg.g (𝜑𝐺𝐹)
mapdpg.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpg.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpgem25.h1 (𝜑 → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
mapdpgem25.i1 (𝜑 → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
mapdpglem26.a 𝐴 = (Scalar‘𝑈)
mapdpglem26.b 𝐵 = (Base‘𝐴)
mapdpglem26.t · = ( ·𝑠𝐶)
mapdpglem26.o 𝑂 = (0g𝐴)
mapdpglem28.ve (𝜑𝑣𝐵)
mapdpglem28.u1 (𝜑 = (𝑢 · 𝑖))
mapdpglem28.u2 (𝜑 → (𝐺𝑅) = (𝑣 · (𝐺𝑅𝑖)))
mapdpglem28.ue (𝜑𝑢𝐵)
Assertion
Ref Expression
mapdpglem31 (𝜑 = 𝑖)
Distinct variable groups:   ,𝑖,𝑢,𝑣   𝑢,𝐵,𝑣   𝑢,𝐶,𝑣   𝑢,𝑂,𝑣   𝑢, · ,𝑣   𝑣,𝐺   𝑣,𝑅
Allowed substitution hints:   𝜑(𝑣,𝑢,,𝑖)   𝐴(𝑣,𝑢,,𝑖)   𝐵(,𝑖)   𝐶(,𝑖)   𝑅(𝑢,,𝑖)   · (,𝑖)   𝑈(𝑣,𝑢,,𝑖)   𝐹(𝑣,𝑢,,𝑖)   𝐺(𝑢,,𝑖)   𝐻(𝑣,𝑢,,𝑖)   𝐽(𝑣,𝑢,,𝑖)   𝐾(𝑣,𝑢,,𝑖)   𝑀(𝑣,𝑢,,𝑖)   (𝑣,𝑢,,𝑖)   𝑁(𝑣,𝑢,,𝑖)   𝑂(,𝑖)   𝑉(𝑣,𝑢,,𝑖)   𝑊(𝑣,𝑢,,𝑖)   𝑋(𝑣,𝑢,,𝑖)   𝑌(𝑣,𝑢,,𝑖)   0 (𝑣,𝑢,,𝑖)

Proof of Theorem mapdpglem31
StepHypRef Expression
1 mapdpglem28.u1 . 2 (𝜑 = (𝑢 · 𝑖))
2 mapdpg.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 mapdpg.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdpglem26.a . . . . 5 𝐴 = (Scalar‘𝑈)
5 eqid 2823 . . . . 5 (1r𝐴) = (1r𝐴)
6 mapdpg.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
7 eqid 2823 . . . . 5 (Scalar‘𝐶) = (Scalar‘𝐶)
8 eqid 2823 . . . . 5 (1r‘(Scalar‘𝐶)) = (1r‘(Scalar‘𝐶))
9 mapdpg.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
102, 3, 4, 5, 6, 7, 8, 9lcd1 38747 . . . 4 (𝜑 → (1r‘(Scalar‘𝐶)) = (1r𝐴))
1110oveq1d 7173 . . 3 (𝜑 → ((1r‘(Scalar‘𝐶)) · 𝑖) = ((1r𝐴) · 𝑖))
122, 6, 9lcdlmod 38730 . . . 4 (𝜑𝐶 ∈ LMod)
13 mapdpgem25.i1 . . . . 5 (𝜑 → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
1413simpld 497 . . . 4 (𝜑𝑖𝐹)
15 mapdpg.f . . . . 5 𝐹 = (Base‘𝐶)
16 mapdpglem26.t . . . . 5 · = ( ·𝑠𝐶)
1715, 7, 16, 8lmodvs1 19664 . . . 4 ((𝐶 ∈ LMod ∧ 𝑖𝐹) → ((1r‘(Scalar‘𝐶)) · 𝑖) = 𝑖)
1812, 14, 17syl2anc 586 . . 3 (𝜑 → ((1r‘(Scalar‘𝐶)) · 𝑖) = 𝑖)
19 mapdpg.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
20 mapdpg.v . . . . . 6 𝑉 = (Base‘𝑈)
21 mapdpg.s . . . . . 6 = (-g𝑈)
22 mapdpg.z . . . . . 6 0 = (0g𝑈)
23 mapdpg.n . . . . . 6 𝑁 = (LSpan‘𝑈)
24 mapdpg.r . . . . . 6 𝑅 = (-g𝐶)
25 mapdpg.j . . . . . 6 𝐽 = (LSpan‘𝐶)
26 mapdpg.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
27 mapdpg.y . . . . . 6 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
28 mapdpg.g . . . . . 6 (𝜑𝐺𝐹)
29 mapdpg.ne . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
30 mapdpg.e . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
31 mapdpgem25.h1 . . . . . 6 (𝜑 → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
32 mapdpglem26.b . . . . . 6 𝐵 = (Base‘𝐴)
33 mapdpglem26.o . . . . . 6 𝑂 = (0g𝐴)
34 mapdpglem28.ve . . . . . 6 (𝜑𝑣𝐵)
35 mapdpglem28.u2 . . . . . 6 (𝜑 → (𝐺𝑅) = (𝑣 · (𝐺𝑅𝑖)))
36 mapdpglem28.ue . . . . . 6 (𝜑𝑢𝐵)
372, 19, 3, 20, 21, 22, 23, 6, 15, 24, 25, 9, 26, 27, 28, 29, 30, 31, 13, 4, 32, 16, 33, 34, 1, 35, 36mapdpglem30 38840 . . . . 5 (𝜑 → (𝑣 = (1r𝐴) ∧ 𝑣 = 𝑢))
38 eqtr2 2844 . . . . 5 ((𝑣 = (1r𝐴) ∧ 𝑣 = 𝑢) → (1r𝐴) = 𝑢)
3937, 38syl 17 . . . 4 (𝜑 → (1r𝐴) = 𝑢)
4039oveq1d 7173 . . 3 (𝜑 → ((1r𝐴) · 𝑖) = (𝑢 · 𝑖))
4111, 18, 403eqtr3rd 2867 . 2 (𝜑 → (𝑢 · 𝑖) = 𝑖)
421, 41eqtrd 2858 1 (𝜑 = 𝑖)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  cdif 3935  {csn 4569  cfv 6357  (class class class)co 7158  Basecbs 16485  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715  -gcsg 18107  1rcur 19253  LModclmod 19636  LSpanclspn 19745  HLchlt 36488  LHypclh 37122  DVecHcdvh 38216  LCDualclcd 38724  mapdcmpd 38762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-riotaBAD 36091
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-undef 7941  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-0g 16717  df-mre 16859  df-mrc 16860  df-acs 16862  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-cntz 18449  df-oppg 18476  df-lsm 18763  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-drng 19506  df-lmod 19638  df-lss 19706  df-lsp 19746  df-lvec 19877  df-lsatoms 36114  df-lshyp 36115  df-lcv 36157  df-lfl 36196  df-lkr 36224  df-ldual 36262  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-lplanes 36637  df-lvols 36638  df-lines 36639  df-psubsp 36641  df-pmap 36642  df-padd 36934  df-lhyp 37126  df-laut 37127  df-ldil 37242  df-ltrn 37243  df-trl 37297  df-tgrp 37881  df-tendo 37893  df-edring 37895  df-dveca 38141  df-disoa 38167  df-dvech 38217  df-dib 38277  df-dic 38311  df-dih 38367  df-doch 38486  df-djh 38533  df-lcdual 38725  df-mapd 38763
This theorem is referenced by:  mapdpglem32  38843
  Copyright terms: Public domain W3C validator