Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapfzcons Structured version   Visualization version   GIF version

Theorem mapfzcons 36759
Description: Extending a one-based mapping by adding a tuple at the end results in another mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypothesis
Ref Expression
mapfzcons.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
mapfzcons ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨𝑀, 𝐶⟩}) ∈ (𝐵𝑚 (1...𝑀)))

Proof of Theorem mapfzcons
StepHypRef Expression
1 simp2 1060 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → 𝐴 ∈ (𝐵𝑚 (1...𝑁)))
2 elmapex 7822 . . . . . . . . 9 (𝐴 ∈ (𝐵𝑚 (1...𝑁)) → (𝐵 ∈ V ∧ (1...𝑁) ∈ V))
32simpld 475 . . . . . . . 8 (𝐴 ∈ (𝐵𝑚 (1...𝑁)) → 𝐵 ∈ V)
433ad2ant2 1081 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → 𝐵 ∈ V)
5 ovex 6632 . . . . . . 7 (1...𝑁) ∈ V
6 elmapg 7815 . . . . . . 7 ((𝐵 ∈ V ∧ (1...𝑁) ∈ V) → (𝐴 ∈ (𝐵𝑚 (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶𝐵))
74, 5, 6sylancl 693 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∈ (𝐵𝑚 (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶𝐵))
81, 7mpbid 222 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → 𝐴:(1...𝑁)⟶𝐵)
9 ovex 6632 . . . . . . . 8 (𝑁 + 1) ∈ V
10 simp3 1061 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → 𝐶𝐵)
11 f1osng 6134 . . . . . . . 8 (((𝑁 + 1) ∈ V ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}–1-1-onto→{𝐶})
129, 10, 11sylancr 694 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}–1-1-onto→{𝐶})
13 f1of 6094 . . . . . . 7 ({⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}–1-1-onto→{𝐶} → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶{𝐶})
1412, 13syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶{𝐶})
15 snssi 4308 . . . . . . 7 (𝐶𝐵 → {𝐶} ⊆ 𝐵)
16153ad2ant3 1082 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → {𝐶} ⊆ 𝐵)
1714, 16fssd 6014 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶𝐵)
18 fzp1disj 12341 . . . . . 6 ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅
1918a1i 11 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅)
20 fun 6023 . . . . 5 (((𝐴:(1...𝑁)⟶𝐵 ∧ {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶𝐵) ∧ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):((1...𝑁) ∪ {(𝑁 + 1)})⟶(𝐵𝐵))
218, 17, 19, 20syl21anc 1322 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):((1...𝑁) ∪ {(𝑁 + 1)})⟶(𝐵𝐵))
22 1z 11351 . . . . . . 7 1 ∈ ℤ
23 simp1 1059 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → 𝑁 ∈ ℕ0)
24 nn0uz 11666 . . . . . . . . 9 0 = (ℤ‘0)
25 1m1e0 11033 . . . . . . . . . 10 (1 − 1) = 0
2625fveq2i 6151 . . . . . . . . 9 (ℤ‘(1 − 1)) = (ℤ‘0)
2724, 26eqtr4i 2646 . . . . . . . 8 0 = (ℤ‘(1 − 1))
2823, 27syl6eleq 2708 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → 𝑁 ∈ (ℤ‘(1 − 1)))
29 fzsuc2 12340 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(1 − 1))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
3022, 28, 29sylancr 694 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
3130eqcomd 2627 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → ((1...𝑁) ∪ {(𝑁 + 1)}) = (1...(𝑁 + 1)))
32 unidm 3734 . . . . . 6 (𝐵𝐵) = 𝐵
3332a1i 11 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → (𝐵𝐵) = 𝐵)
3431, 33feq23d 5997 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → ((𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):((1...𝑁) ∪ {(𝑁 + 1)})⟶(𝐵𝐵) ↔ (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵))
3521, 34mpbid 222 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵)
36 ovex 6632 . . . 4 (1...(𝑁 + 1)) ∈ V
37 elmapg 7815 . . . 4 ((𝐵 ∈ V ∧ (1...(𝑁 + 1)) ∈ V) → ((𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}) ∈ (𝐵𝑚 (1...(𝑁 + 1))) ↔ (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵))
384, 36, 37sylancl 693 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → ((𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}) ∈ (𝐵𝑚 (1...(𝑁 + 1))) ↔ (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵))
3935, 38mpbird 247 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}) ∈ (𝐵𝑚 (1...(𝑁 + 1))))
40 mapfzcons.1 . . . . 5 𝑀 = (𝑁 + 1)
4140opeq1i 4373 . . . 4 𝑀, 𝐶⟩ = ⟨(𝑁 + 1), 𝐶
4241sneqi 4159 . . 3 {⟨𝑀, 𝐶⟩} = {⟨(𝑁 + 1), 𝐶⟩}
4342uneq2i 3742 . 2 (𝐴 ∪ {⟨𝑀, 𝐶⟩}) = (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩})
4440oveq2i 6615 . . 3 (1...𝑀) = (1...(𝑁 + 1))
4544oveq2i 6615 . 2 (𝐵𝑚 (1...𝑀)) = (𝐵𝑚 (1...(𝑁 + 1)))
4639, 43, 453eltr4g 2715 1 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵𝑚 (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨𝑀, 𝐶⟩}) ∈ (𝐵𝑚 (1...𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3186  cun 3553  cin 3554  wss 3555  c0 3891  {csn 4148  cop 4154  wf 5843  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  𝑚 cmap 7802  0cc0 9880  1c1 9881   + caddc 9883  cmin 10210  0cn0 11236  cz 11321  cuz 11631  ...cfz 12268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269
This theorem is referenced by:  rexrabdioph  36838
  Copyright terms: Public domain W3C validator