Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapsnd Structured version   Visualization version   GIF version

Theorem mapsnd 38848
Description: The value of set exponentiation with a singleton exponent. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
mapsnd.1 (𝜑𝐴𝑉)
mapsnd.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
mapsnd (𝜑 → (𝐴𝑚 {𝐵}) = {𝑓 ∣ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}})
Distinct variable groups:   𝐴,𝑓,𝑦   𝐵,𝑓,𝑦   𝜑,𝑓,𝑦
Allowed substitution hints:   𝑉(𝑦,𝑓)   𝑊(𝑦,𝑓)

Proof of Theorem mapsnd
StepHypRef Expression
1 mapsnd.1 . . . 4 (𝜑𝐴𝑉)
2 mapsnd.2 . . . . 5 (𝜑𝐵𝑊)
3 snex 4874 . . . . . 6 {𝐵} ∈ V
43a1i 11 . . . . 5 (𝐵𝑊 → {𝐵} ∈ V)
52, 4syl 17 . . . 4 (𝜑 → {𝐵} ∈ V)
6 elmapg 7816 . . . 4 ((𝐴𝑉 ∧ {𝐵} ∈ V) → (𝑓 ∈ (𝐴𝑚 {𝐵}) ↔ 𝑓:{𝐵}⟶𝐴))
71, 5, 6syl2anc 692 . . 3 (𝜑 → (𝑓 ∈ (𝐴𝑚 {𝐵}) ↔ 𝑓:{𝐵}⟶𝐴))
8 ffn 6004 . . . . . . . . . . 11 (𝑓:{𝐵}⟶𝐴𝑓 Fn {𝐵})
98a1i 11 . . . . . . . . . 10 (𝜑 → (𝑓:{𝐵}⟶𝐴𝑓 Fn {𝐵}))
109imp 445 . . . . . . . . 9 ((𝜑𝑓:{𝐵}⟶𝐴) → 𝑓 Fn {𝐵})
11 snidg 4182 . . . . . . . . . . 11 (𝐵𝑊𝐵 ∈ {𝐵})
122, 11syl 17 . . . . . . . . . 10 (𝜑𝐵 ∈ {𝐵})
1312adantr 481 . . . . . . . . 9 ((𝜑𝑓:{𝐵}⟶𝐴) → 𝐵 ∈ {𝐵})
14 fneu 5955 . . . . . . . . 9 ((𝑓 Fn {𝐵} ∧ 𝐵 ∈ {𝐵}) → ∃!𝑦 𝐵𝑓𝑦)
1510, 13, 14syl2anc 692 . . . . . . . 8 ((𝜑𝑓:{𝐵}⟶𝐴) → ∃!𝑦 𝐵𝑓𝑦)
16 euabsn 4236 . . . . . . . . . 10 (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦{𝑦𝐵𝑓𝑦} = {𝑦})
17 frel 6009 . . . . . . . . . . . . . 14 (𝑓:{𝐵}⟶𝐴 → Rel 𝑓)
18 relimasn 5451 . . . . . . . . . . . . . 14 (Rel 𝑓 → (𝑓 “ {𝐵}) = {𝑦𝐵𝑓𝑦})
1917, 18syl 17 . . . . . . . . . . . . 13 (𝑓:{𝐵}⟶𝐴 → (𝑓 “ {𝐵}) = {𝑦𝐵𝑓𝑦})
20 imadmrn 5439 . . . . . . . . . . . . . 14 (𝑓 “ dom 𝑓) = ran 𝑓
21 fdm 6010 . . . . . . . . . . . . . . 15 (𝑓:{𝐵}⟶𝐴 → dom 𝑓 = {𝐵})
2221imaeq2d 5429 . . . . . . . . . . . . . 14 (𝑓:{𝐵}⟶𝐴 → (𝑓 “ dom 𝑓) = (𝑓 “ {𝐵}))
2320, 22syl5reqr 2675 . . . . . . . . . . . . 13 (𝑓:{𝐵}⟶𝐴 → (𝑓 “ {𝐵}) = ran 𝑓)
2419, 23eqtr3d 2662 . . . . . . . . . . . 12 (𝑓:{𝐵}⟶𝐴 → {𝑦𝐵𝑓𝑦} = ran 𝑓)
2524eqeq1d 2628 . . . . . . . . . . 11 (𝑓:{𝐵}⟶𝐴 → ({𝑦𝐵𝑓𝑦} = {𝑦} ↔ ran 𝑓 = {𝑦}))
2625exbidv 1852 . . . . . . . . . 10 (𝑓:{𝐵}⟶𝐴 → (∃𝑦{𝑦𝐵𝑓𝑦} = {𝑦} ↔ ∃𝑦ran 𝑓 = {𝑦}))
2716, 26syl5bb 272 . . . . . . . . 9 (𝑓:{𝐵}⟶𝐴 → (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦ran 𝑓 = {𝑦}))
2827adantl 482 . . . . . . . 8 ((𝜑𝑓:{𝐵}⟶𝐴) → (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦ran 𝑓 = {𝑦}))
2915, 28mpbid 222 . . . . . . 7 ((𝜑𝑓:{𝐵}⟶𝐴) → ∃𝑦ran 𝑓 = {𝑦})
30 vex 3194 . . . . . . . . . . . . . . 15 𝑦 ∈ V
3130snid 4184 . . . . . . . . . . . . . 14 𝑦 ∈ {𝑦}
32 eleq2 2693 . . . . . . . . . . . . . 14 (ran 𝑓 = {𝑦} → (𝑦 ∈ ran 𝑓𝑦 ∈ {𝑦}))
3331, 32mpbiri 248 . . . . . . . . . . . . 13 (ran 𝑓 = {𝑦} → 𝑦 ∈ ran 𝑓)
34 frn 6012 . . . . . . . . . . . . . 14 (𝑓:{𝐵}⟶𝐴 → ran 𝑓𝐴)
3534sseld 3587 . . . . . . . . . . . . 13 (𝑓:{𝐵}⟶𝐴 → (𝑦 ∈ ran 𝑓𝑦𝐴))
3633, 35syl5 34 . . . . . . . . . . . 12 (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑦𝐴))
3736imp 445 . . . . . . . . . . 11 ((𝑓:{𝐵}⟶𝐴 ∧ ran 𝑓 = {𝑦}) → 𝑦𝐴)
3837adantll 749 . . . . . . . . . 10 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝑦𝐴)
39 dffn4 6080 . . . . . . . . . . . . . . . 16 (𝑓 Fn {𝐵} ↔ 𝑓:{𝐵}–onto→ran 𝑓)
408, 39sylib 208 . . . . . . . . . . . . . . 15 (𝑓:{𝐵}⟶𝐴𝑓:{𝐵}–onto→ran 𝑓)
41 fof 6074 . . . . . . . . . . . . . . 15 (𝑓:{𝐵}–onto→ran 𝑓𝑓:{𝐵}⟶ran 𝑓)
4240, 41syl 17 . . . . . . . . . . . . . 14 (𝑓:{𝐵}⟶𝐴𝑓:{𝐵}⟶ran 𝑓)
43 feq3 5987 . . . . . . . . . . . . . 14 (ran 𝑓 = {𝑦} → (𝑓:{𝐵}⟶ran 𝑓𝑓:{𝐵}⟶{𝑦}))
4442, 43syl5ibcom 235 . . . . . . . . . . . . 13 (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑓:{𝐵}⟶{𝑦}))
4544imp 445 . . . . . . . . . . . 12 ((𝑓:{𝐵}⟶𝐴 ∧ ran 𝑓 = {𝑦}) → 𝑓:{𝐵}⟶{𝑦})
4645adantll 749 . . . . . . . . . . 11 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝑓:{𝐵}⟶{𝑦})
472ad2antrr 761 . . . . . . . . . . . 12 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝐵𝑊)
4830a1i 11 . . . . . . . . . . . 12 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝑦 ∈ V)
49 fsng 6359 . . . . . . . . . . . 12 ((𝐵𝑊𝑦 ∈ V) → (𝑓:{𝐵}⟶{𝑦} ↔ 𝑓 = {⟨𝐵, 𝑦⟩}))
5047, 48, 49syl2anc 692 . . . . . . . . . . 11 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → (𝑓:{𝐵}⟶{𝑦} ↔ 𝑓 = {⟨𝐵, 𝑦⟩}))
5146, 50mpbid 222 . . . . . . . . . 10 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝑓 = {⟨𝐵, 𝑦⟩})
5238, 51jca 554 . . . . . . . . 9 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → (𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}))
5352ex 450 . . . . . . . 8 ((𝜑𝑓:{𝐵}⟶𝐴) → (ran 𝑓 = {𝑦} → (𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩})))
5453eximdv 1848 . . . . . . 7 ((𝜑𝑓:{𝐵}⟶𝐴) → (∃𝑦ran 𝑓 = {𝑦} → ∃𝑦(𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩})))
5529, 54mpd 15 . . . . . 6 ((𝜑𝑓:{𝐵}⟶𝐴) → ∃𝑦(𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}))
56 df-rex 2918 . . . . . 6 (∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩} ↔ ∃𝑦(𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}))
5755, 56sylibr 224 . . . . 5 ((𝜑𝑓:{𝐵}⟶𝐴) → ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩})
5857ex 450 . . . 4 (𝜑 → (𝑓:{𝐵}⟶𝐴 → ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}))
5930a1i 11 . . . . . . . . . . . 12 (𝜑𝑦 ∈ V)
60 f1osng 6136 . . . . . . . . . . . 12 ((𝐵𝑊𝑦 ∈ V) → {⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦})
612, 59, 60syl2anc 692 . . . . . . . . . . 11 (𝜑 → {⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦})
6261adantr 481 . . . . . . . . . 10 ((𝜑𝑓 = {⟨𝐵, 𝑦⟩}) → {⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦})
63 f1oeq1 6086 . . . . . . . . . . . 12 (𝑓 = {⟨𝐵, 𝑦⟩} → (𝑓:{𝐵}–1-1-onto→{𝑦} ↔ {⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦}))
6463bicomd 213 . . . . . . . . . . 11 (𝑓 = {⟨𝐵, 𝑦⟩} → ({⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦} ↔ 𝑓:{𝐵}–1-1-onto→{𝑦}))
6564adantl 482 . . . . . . . . . 10 ((𝜑𝑓 = {⟨𝐵, 𝑦⟩}) → ({⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦} ↔ 𝑓:{𝐵}–1-1-onto→{𝑦}))
6662, 65mpbid 222 . . . . . . . . 9 ((𝜑𝑓 = {⟨𝐵, 𝑦⟩}) → 𝑓:{𝐵}–1-1-onto→{𝑦})
67 f1of 6096 . . . . . . . . 9 (𝑓:{𝐵}–1-1-onto→{𝑦} → 𝑓:{𝐵}⟶{𝑦})
6866, 67syl 17 . . . . . . . 8 ((𝜑𝑓 = {⟨𝐵, 𝑦⟩}) → 𝑓:{𝐵}⟶{𝑦})
69683adant2 1078 . . . . . . 7 ((𝜑𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}) → 𝑓:{𝐵}⟶{𝑦})
70 snssi 4313 . . . . . . . 8 (𝑦𝐴 → {𝑦} ⊆ 𝐴)
71703ad2ant2 1081 . . . . . . 7 ((𝜑𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}) → {𝑦} ⊆ 𝐴)
72 fss 6015 . . . . . . 7 ((𝑓:{𝐵}⟶{𝑦} ∧ {𝑦} ⊆ 𝐴) → 𝑓:{𝐵}⟶𝐴)
7369, 71, 72syl2anc 692 . . . . . 6 ((𝜑𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}) → 𝑓:{𝐵}⟶𝐴)
74733exp 1261 . . . . 5 (𝜑 → (𝑦𝐴 → (𝑓 = {⟨𝐵, 𝑦⟩} → 𝑓:{𝐵}⟶𝐴)))
7574rexlimdv 3028 . . . 4 (𝜑 → (∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩} → 𝑓:{𝐵}⟶𝐴))
7658, 75impbid 202 . . 3 (𝜑 → (𝑓:{𝐵}⟶𝐴 ↔ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}))
777, 76bitrd 268 . 2 (𝜑 → (𝑓 ∈ (𝐴𝑚 {𝐵}) ↔ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}))
7877abbi2dv 2745 1 (𝜑 → (𝐴𝑚 {𝐵}) = {𝑓 ∣ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1992  ∃!weu 2474  {cab 2612  wrex 2913  Vcvv 3191  wss 3560  {csn 4153  cop 4159   class class class wbr 4618  dom cdm 5079  ran crn 5080  cima 5082  Rel wrel 5084   Fn wfn 5845  wf 5846  ontowfo 5848  1-1-ontowf1o 5849  (class class class)co 6605  𝑚 cmap 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-map 7805
This theorem is referenced by:  mapsnend  38851  iunmapsn  38869
  Copyright terms: Public domain W3C validator