MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsspm Structured version   Visualization version   GIF version

Theorem mapsspm 7876
Description: Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.)
Assertion
Ref Expression
mapsspm (𝐴𝑚 𝐵) ⊆ (𝐴pm 𝐵)

Proof of Theorem mapsspm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elmapex 7863 . . . 4 (𝑓 ∈ (𝐴𝑚 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21simprd 479 . . 3 (𝑓 ∈ (𝐴𝑚 𝐵) → 𝐵 ∈ V)
31simpld 475 . . 3 (𝑓 ∈ (𝐴𝑚 𝐵) → 𝐴 ∈ V)
4 elmapi 7864 . . 3 (𝑓 ∈ (𝐴𝑚 𝐵) → 𝑓:𝐵𝐴)
5 fpmg 7868 . . 3 ((𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝑓:𝐵𝐴) → 𝑓 ∈ (𝐴pm 𝐵))
62, 3, 4, 5syl3anc 1324 . 2 (𝑓 ∈ (𝐴𝑚 𝐵) → 𝑓 ∈ (𝐴pm 𝐵))
76ssriv 3599 1 (𝐴𝑚 𝐵) ⊆ (𝐴pm 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 1988  Vcvv 3195  wss 3567  wf 5872  (class class class)co 6635  𝑚 cmap 7842  pm cpm 7843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-1st 7153  df-2nd 7154  df-map 7844  df-pm 7845
This theorem is referenced by:  mapsspw  7878  wunmap  9533  dvntaylp  24106  taylthlem1  24108  taylthlem2  24109  mrsubrn  31384  mrsubff1  31385  msubrn  31400  msubff1  31427
  Copyright terms: Public domain W3C validator