MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapunen Structured version   Visualization version   GIF version

Theorem mapunen 8689
Description: Equinumerosity law for set exponentiation of a disjoint union. Exercise 4.45 of [Mendelson] p. 255. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
mapunen (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (𝐶m (𝐴𝐵)) ≈ ((𝐶m 𝐴) × (𝐶m 𝐵)))

Proof of Theorem mapunen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7192 . . 3 (𝐶m (𝐴𝐵)) ∈ V
21a1i 11 . 2 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (𝐶m (𝐴𝐵)) ∈ V)
3 ovex 7192 . . . 4 (𝐶m 𝐴) ∈ V
4 ovex 7192 . . . 4 (𝐶m 𝐵) ∈ V
53, 4xpex 7479 . . 3 ((𝐶m 𝐴) × (𝐶m 𝐵)) ∈ V
65a1i 11 . 2 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → ((𝐶m 𝐴) × (𝐶m 𝐵)) ∈ V)
7 elmapi 8431 . . . . 5 (𝑥 ∈ (𝐶m (𝐴𝐵)) → 𝑥:(𝐴𝐵)⟶𝐶)
8 ssun1 4151 . . . . 5 𝐴 ⊆ (𝐴𝐵)
9 fssres 6547 . . . . 5 ((𝑥:(𝐴𝐵)⟶𝐶𝐴 ⊆ (𝐴𝐵)) → (𝑥𝐴):𝐴𝐶)
107, 8, 9sylancl 588 . . . 4 (𝑥 ∈ (𝐶m (𝐴𝐵)) → (𝑥𝐴):𝐴𝐶)
11 ssun2 4152 . . . . 5 𝐵 ⊆ (𝐴𝐵)
12 fssres 6547 . . . . 5 ((𝑥:(𝐴𝐵)⟶𝐶𝐵 ⊆ (𝐴𝐵)) → (𝑥𝐵):𝐵𝐶)
137, 11, 12sylancl 588 . . . 4 (𝑥 ∈ (𝐶m (𝐴𝐵)) → (𝑥𝐵):𝐵𝐶)
1410, 13jca 514 . . 3 (𝑥 ∈ (𝐶m (𝐴𝐵)) → ((𝑥𝐴):𝐴𝐶 ∧ (𝑥𝐵):𝐵𝐶))
15 opelxp 5594 . . . 4 (⟨(𝑥𝐴), (𝑥𝐵)⟩ ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)) ↔ ((𝑥𝐴) ∈ (𝐶m 𝐴) ∧ (𝑥𝐵) ∈ (𝐶m 𝐵)))
16 simpl3 1189 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → 𝐶𝑋)
17 simpl1 1187 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → 𝐴𝑉)
1816, 17elmapd 8423 . . . . 5 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → ((𝑥𝐴) ∈ (𝐶m 𝐴) ↔ (𝑥𝐴):𝐴𝐶))
19 simpl2 1188 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → 𝐵𝑊)
2016, 19elmapd 8423 . . . . 5 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → ((𝑥𝐵) ∈ (𝐶m 𝐵) ↔ (𝑥𝐵):𝐵𝐶))
2118, 20anbi12d 632 . . . 4 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (((𝑥𝐴) ∈ (𝐶m 𝐴) ∧ (𝑥𝐵) ∈ (𝐶m 𝐵)) ↔ ((𝑥𝐴):𝐴𝐶 ∧ (𝑥𝐵):𝐵𝐶)))
2215, 21syl5bb 285 . . 3 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (⟨(𝑥𝐴), (𝑥𝐵)⟩ ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)) ↔ ((𝑥𝐴):𝐴𝐶 ∧ (𝑥𝐵):𝐵𝐶)))
2314, 22syl5ibr 248 . 2 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐶m (𝐴𝐵)) → ⟨(𝑥𝐴), (𝑥𝐵)⟩ ∈ ((𝐶m 𝐴) × (𝐶m 𝐵))))
24 xp1st 7724 . . . . . . 7 (𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)) → (1st𝑦) ∈ (𝐶m 𝐴))
2524adantl 484 . . . . . 6 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵))) → (1st𝑦) ∈ (𝐶m 𝐴))
26 elmapi 8431 . . . . . 6 ((1st𝑦) ∈ (𝐶m 𝐴) → (1st𝑦):𝐴𝐶)
2725, 26syl 17 . . . . 5 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵))) → (1st𝑦):𝐴𝐶)
28 xp2nd 7725 . . . . . . 7 (𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)) → (2nd𝑦) ∈ (𝐶m 𝐵))
2928adantl 484 . . . . . 6 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵))) → (2nd𝑦) ∈ (𝐶m 𝐵))
30 elmapi 8431 . . . . . 6 ((2nd𝑦) ∈ (𝐶m 𝐵) → (2nd𝑦):𝐵𝐶)
3129, 30syl 17 . . . . 5 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵))) → (2nd𝑦):𝐵𝐶)
32 simplr 767 . . . . 5 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵))) → (𝐴𝐵) = ∅)
3327, 31, 32fun2d 6545 . . . 4 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵))) → ((1st𝑦) ∪ (2nd𝑦)):(𝐴𝐵)⟶𝐶)
3433ex 415 . . 3 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)) → ((1st𝑦) ∪ (2nd𝑦)):(𝐴𝐵)⟶𝐶))
35 unexg 7475 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
3617, 19, 35syl2anc 586 . . . 4 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ V)
3716, 36elmapd 8423 . . 3 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (((1st𝑦) ∪ (2nd𝑦)) ∈ (𝐶m (𝐴𝐵)) ↔ ((1st𝑦) ∪ (2nd𝑦)):(𝐴𝐵)⟶𝐶))
3834, 37sylibrd 261 . 2 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)) → ((1st𝑦) ∪ (2nd𝑦)) ∈ (𝐶m (𝐴𝐵))))
39 1st2nd2 7731 . . . . . . 7 (𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
4039ad2antll 727 . . . . . 6 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
4127adantrl 714 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → (1st𝑦):𝐴𝐶)
4231adantrl 714 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → (2nd𝑦):𝐵𝐶)
43 res0 5860 . . . . . . . . . 10 ((1st𝑦) ↾ ∅) = ∅
44 res0 5860 . . . . . . . . . 10 ((2nd𝑦) ↾ ∅) = ∅
4543, 44eqtr4i 2850 . . . . . . . . 9 ((1st𝑦) ↾ ∅) = ((2nd𝑦) ↾ ∅)
46 simplr 767 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → (𝐴𝐵) = ∅)
4746reseq2d 5856 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → ((1st𝑦) ↾ (𝐴𝐵)) = ((1st𝑦) ↾ ∅))
4846reseq2d 5856 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → ((2nd𝑦) ↾ (𝐴𝐵)) = ((2nd𝑦) ↾ ∅))
4945, 47, 483eqtr4a 2885 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → ((1st𝑦) ↾ (𝐴𝐵)) = ((2nd𝑦) ↾ (𝐴𝐵)))
50 fresaunres1 6554 . . . . . . . 8 (((1st𝑦):𝐴𝐶 ∧ (2nd𝑦):𝐵𝐶 ∧ ((1st𝑦) ↾ (𝐴𝐵)) = ((2nd𝑦) ↾ (𝐴𝐵))) → (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐴) = (1st𝑦))
5141, 42, 49, 50syl3anc 1367 . . . . . . 7 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐴) = (1st𝑦))
52 fresaunres2 6553 . . . . . . . 8 (((1st𝑦):𝐴𝐶 ∧ (2nd𝑦):𝐵𝐶 ∧ ((1st𝑦) ↾ (𝐴𝐵)) = ((2nd𝑦) ↾ (𝐴𝐵))) → (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐵) = (2nd𝑦))
5341, 42, 49, 52syl3anc 1367 . . . . . . 7 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐵) = (2nd𝑦))
5451, 53opeq12d 4814 . . . . . 6 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → ⟨(((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐴), (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐵)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
5540, 54eqtr4d 2862 . . . . 5 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → 𝑦 = ⟨(((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐴), (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐵)⟩)
56 reseq1 5850 . . . . . . 7 (𝑥 = ((1st𝑦) ∪ (2nd𝑦)) → (𝑥𝐴) = (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐴))
57 reseq1 5850 . . . . . . 7 (𝑥 = ((1st𝑦) ∪ (2nd𝑦)) → (𝑥𝐵) = (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐵))
5856, 57opeq12d 4814 . . . . . 6 (𝑥 = ((1st𝑦) ∪ (2nd𝑦)) → ⟨(𝑥𝐴), (𝑥𝐵)⟩ = ⟨(((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐴), (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐵)⟩)
5958eqeq2d 2835 . . . . 5 (𝑥 = ((1st𝑦) ∪ (2nd𝑦)) → (𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩ ↔ 𝑦 = ⟨(((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐴), (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐵)⟩))
6055, 59syl5ibrcom 249 . . . 4 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → (𝑥 = ((1st𝑦) ∪ (2nd𝑦)) → 𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩))
61 ffn 6517 . . . . . . . 8 (𝑥:(𝐴𝐵)⟶𝐶𝑥 Fn (𝐴𝐵))
62 fnresdm 6469 . . . . . . . 8 (𝑥 Fn (𝐴𝐵) → (𝑥 ↾ (𝐴𝐵)) = 𝑥)
637, 61, 623syl 18 . . . . . . 7 (𝑥 ∈ (𝐶m (𝐴𝐵)) → (𝑥 ↾ (𝐴𝐵)) = 𝑥)
6463ad2antrl 726 . . . . . 6 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → (𝑥 ↾ (𝐴𝐵)) = 𝑥)
6564eqcomd 2830 . . . . 5 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → 𝑥 = (𝑥 ↾ (𝐴𝐵)))
66 vex 3500 . . . . . . . . . 10 𝑥 ∈ V
6766resex 5902 . . . . . . . . 9 (𝑥𝐴) ∈ V
6866resex 5902 . . . . . . . . 9 (𝑥𝐵) ∈ V
6967, 68op1std 7702 . . . . . . . 8 (𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩ → (1st𝑦) = (𝑥𝐴))
7067, 68op2ndd 7703 . . . . . . . 8 (𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩ → (2nd𝑦) = (𝑥𝐵))
7169, 70uneq12d 4143 . . . . . . 7 (𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩ → ((1st𝑦) ∪ (2nd𝑦)) = ((𝑥𝐴) ∪ (𝑥𝐵)))
72 resundi 5870 . . . . . . 7 (𝑥 ↾ (𝐴𝐵)) = ((𝑥𝐴) ∪ (𝑥𝐵))
7371, 72syl6eqr 2877 . . . . . 6 (𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩ → ((1st𝑦) ∪ (2nd𝑦)) = (𝑥 ↾ (𝐴𝐵)))
7473eqeq2d 2835 . . . . 5 (𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩ → (𝑥 = ((1st𝑦) ∪ (2nd𝑦)) ↔ 𝑥 = (𝑥 ↾ (𝐴𝐵))))
7565, 74syl5ibrcom 249 . . . 4 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → (𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩ → 𝑥 = ((1st𝑦) ∪ (2nd𝑦))))
7660, 75impbid 214 . . 3 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → (𝑥 = ((1st𝑦) ∪ (2nd𝑦)) ↔ 𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩))
7776ex 415 . 2 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → ((𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵))) → (𝑥 = ((1st𝑦) ∪ (2nd𝑦)) ↔ 𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩)))
782, 6, 23, 38, 77en3d 8549 1 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (𝐶m (𝐴𝐵)) ≈ ((𝐶m 𝐴) × (𝐶m 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  Vcvv 3497  cun 3937  cin 3938  wss 3939  c0 4294  cop 4576   class class class wbr 5069   × cxp 5556  cres 5560   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  1st c1st 7690  2nd c2nd 7691  m cmap 8409  cen 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-1st 7692  df-2nd 7693  df-map 8411  df-en 8513
This theorem is referenced by:  map2xp  8690  mapdom2  8691  mapdjuen  9609  ackbij1lem5  9649  hashmap  13799  mpct  41470
  Copyright terms: Public domain W3C validator