![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > marep01ma | Structured version Visualization version GIF version |
Description: Replacing a row of a square matrix by a row with 0's and a 1 results in a square matrix of the same dimension. (Contributed by AV, 30-Dec-2018.) |
Ref | Expression |
---|---|
marep01ma.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marep01ma.b | ⊢ 𝐵 = (Base‘𝐴) |
marep01ma.r | ⊢ 𝑅 ∈ CRing |
marep01ma.0 | ⊢ 0 = (0g‘𝑅) |
marep01ma.1 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
marep01ma | ⊢ (𝑀 ∈ 𝐵 → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marep01ma.a | . 2 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | eqid 2724 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | marep01ma.b | . 2 ⊢ 𝐵 = (Base‘𝐴) | |
4 | 1, 3 | matrcl 20341 | . . 3 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
5 | 4 | simpld 477 | . 2 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
6 | marep01ma.r | . . 3 ⊢ 𝑅 ∈ CRing | |
7 | 6 | a1i 11 | . 2 ⊢ (𝑀 ∈ 𝐵 → 𝑅 ∈ CRing) |
8 | crngring 18679 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
9 | marep01ma.1 | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
10 | 2, 9 | ringidcl 18689 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
11 | 6, 8, 10 | mp2b 10 | . . . . 5 ⊢ 1 ∈ (Base‘𝑅) |
12 | marep01ma.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
13 | 2, 12 | ring0cl 18690 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) |
14 | 6, 8, 13 | mp2b 10 | . . . . 5 ⊢ 0 ∈ (Base‘𝑅) |
15 | 11, 14 | keepel 4263 | . . . 4 ⊢ if(𝑙 = 𝐼, 1 , 0 ) ∈ (Base‘𝑅) |
16 | 15 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝐼, 1 , 0 ) ∈ (Base‘𝑅)) |
17 | simp2 1129 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑘 ∈ 𝑁) | |
18 | simp3 1130 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑙 ∈ 𝑁) | |
19 | id 22 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ 𝐵) | |
20 | 19, 3 | syl6eleq 2813 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) |
21 | 20 | 3ad2ant1 1125 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
22 | 1, 2 | matecl 20354 | . . . 4 ⊢ ((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑘𝑀𝑙) ∈ (Base‘𝑅)) |
23 | 17, 18, 21, 22 | syl3anc 1439 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑘𝑀𝑙) ∈ (Base‘𝑅)) |
24 | 16, 23 | ifcld 4239 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)) ∈ (Base‘𝑅)) |
25 | 1, 2, 3, 5, 7, 24 | matbas2d 20352 | 1 ⊢ (𝑀 ∈ 𝐵 → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1596 ∈ wcel 2103 Vcvv 3304 ifcif 4194 ‘cfv 6001 (class class class)co 6765 ↦ cmpt2 6767 Fincfn 8072 Basecbs 15980 0gc0g 16223 1rcur 18622 Ringcrg 18668 CRingccrg 18669 Mat cmat 20336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-ot 4294 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-supp 7416 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-oadd 7684 df-er 7862 df-map 7976 df-ixp 8026 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-fsupp 8392 df-sup 8464 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-9 11199 df-n0 11406 df-z 11491 df-dec 11607 df-uz 11801 df-fz 12441 df-struct 15982 df-ndx 15983 df-slot 15984 df-base 15986 df-sets 15987 df-ress 15988 df-plusg 16077 df-mulr 16078 df-sca 16080 df-vsca 16081 df-ip 16082 df-tset 16083 df-ple 16084 df-ds 16087 df-hom 16089 df-cco 16090 df-0g 16225 df-prds 16231 df-pws 16233 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-grp 17547 df-mgp 18611 df-ur 18623 df-ring 18670 df-cring 18671 df-sra 19295 df-rgmod 19296 df-dsmm 20199 df-frlm 20214 df-mat 20337 |
This theorem is referenced by: smadiadetlem0 20590 smadiadetlem1 20591 smadiadet 20599 |
Copyright terms: Public domain | W3C validator |