![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > marepvcl | Structured version Visualization version GIF version |
Description: Closure of the column replacement function for square matrices. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
Ref | Expression |
---|---|
marepvcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marepvcl.b | ⊢ 𝐵 = (Base‘𝐴) |
marepvcl.v | ⊢ 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁) |
Ref | Expression |
---|---|
marepvcl | ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marepvcl.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | marepvcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
3 | eqid 2651 | . . . 4 ⊢ (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅) | |
4 | marepvcl.v | . . . 4 ⊢ 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁) | |
5 | 1, 2, 3, 4 | marepvval 20421 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
6 | 5 | adantl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
7 | eqid 2651 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | 1, 2 | matrcl 20266 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
9 | 8 | simpld 474 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
10 | 9 | 3ad2ant1 1102 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ Fin) |
11 | 10 | adantl 481 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → 𝑁 ∈ Fin) |
12 | simpl 472 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
13 | elmapi 7921 | . . . . . . . . . 10 ⊢ (𝐶 ∈ ((Base‘𝑅) ↑𝑚 𝑁) → 𝐶:𝑁⟶(Base‘𝑅)) | |
14 | ffvelrn 6397 | . . . . . . . . . . 11 ⊢ ((𝐶:𝑁⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝑁) → (𝐶‘𝑖) ∈ (Base‘𝑅)) | |
15 | 14 | ex 449 | . . . . . . . . . 10 ⊢ (𝐶:𝑁⟶(Base‘𝑅) → (𝑖 ∈ 𝑁 → (𝐶‘𝑖) ∈ (Base‘𝑅))) |
16 | 13, 15 | syl 17 | . . . . . . . . 9 ⊢ (𝐶 ∈ ((Base‘𝑅) ↑𝑚 𝑁) → (𝑖 ∈ 𝑁 → (𝐶‘𝑖) ∈ (Base‘𝑅))) |
17 | 16, 4 | eleq2s 2748 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝑉 → (𝑖 ∈ 𝑁 → (𝐶‘𝑖) ∈ (Base‘𝑅))) |
18 | 17 | 3ad2ant2 1103 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → (𝑖 ∈ 𝑁 → (𝐶‘𝑖) ∈ (Base‘𝑅))) |
19 | 18 | adantl 481 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → (𝑖 ∈ 𝑁 → (𝐶‘𝑖) ∈ (Base‘𝑅))) |
20 | 19 | imp 444 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁) → (𝐶‘𝑖) ∈ (Base‘𝑅)) |
21 | 20 | 3adant3 1101 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝐶‘𝑖) ∈ (Base‘𝑅)) |
22 | simp2 1082 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) | |
23 | simp3 1083 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
24 | 2 | eleq2i 2722 | . . . . . . . . 9 ⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐴)) |
25 | 24 | biimpi 206 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) |
26 | 25 | 3ad2ant1 1102 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
27 | 26 | adantl 481 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → 𝑀 ∈ (Base‘𝐴)) |
28 | 27 | 3ad2ant1 1102 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
29 | 1, 7 | matecl 20279 | . . . . 5 ⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
30 | 22, 23, 28, 29 | syl3anc 1366 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
31 | 21, 30 | ifcld 4164 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)) ∈ (Base‘𝑅)) |
32 | 1, 7, 2, 11, 12, 31 | matbas2d 20277 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗))) ∈ 𝐵) |
33 | 6, 32 | eqeltrd 2730 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ifcif 4119 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 ↑𝑚 cmap 7899 Fincfn 7997 Basecbs 15904 Ringcrg 18593 Mat cmat 20261 matRepV cmatrepV 20411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-ot 4219 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-hom 16013 df-cco 16014 df-0g 16149 df-prds 16155 df-pws 16157 df-sra 19220 df-rgmod 19221 df-dsmm 20124 df-frlm 20139 df-mat 20262 df-marepv 20413 |
This theorem is referenced by: ma1repvcl 20424 |
Copyright terms: Public domain | W3C validator |