MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marepvcl Structured version   Visualization version   GIF version

Theorem marepvcl 20423
Description: Closure of the column replacement function for square matrices. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvcl.a 𝐴 = (𝑁 Mat 𝑅)
marepvcl.b 𝐵 = (Base‘𝐴)
marepvcl.v 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
Assertion
Ref Expression
marepvcl ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) ∈ 𝐵)

Proof of Theorem marepvcl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marepvcl.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 marepvcl.b . . . 4 𝐵 = (Base‘𝐴)
3 eqid 2651 . . . 4 (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅)
4 marepvcl.v . . . 4 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
51, 2, 3, 4marepvval 20421 . . 3 ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
65adantl 481 . 2 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
7 eqid 2651 . . 3 (Base‘𝑅) = (Base‘𝑅)
81, 2matrcl 20266 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98simpld 474 . . . . 5 (𝑀𝐵𝑁 ∈ Fin)
1093ad2ant1 1102 . . . 4 ((𝑀𝐵𝐶𝑉𝐾𝑁) → 𝑁 ∈ Fin)
1110adantl 481 . . 3 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → 𝑁 ∈ Fin)
12 simpl 472 . . 3 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → 𝑅 ∈ Ring)
13 elmapi 7921 . . . . . . . . . 10 (𝐶 ∈ ((Base‘𝑅) ↑𝑚 𝑁) → 𝐶:𝑁⟶(Base‘𝑅))
14 ffvelrn 6397 . . . . . . . . . . 11 ((𝐶:𝑁⟶(Base‘𝑅) ∧ 𝑖𝑁) → (𝐶𝑖) ∈ (Base‘𝑅))
1514ex 449 . . . . . . . . . 10 (𝐶:𝑁⟶(Base‘𝑅) → (𝑖𝑁 → (𝐶𝑖) ∈ (Base‘𝑅)))
1613, 15syl 17 . . . . . . . . 9 (𝐶 ∈ ((Base‘𝑅) ↑𝑚 𝑁) → (𝑖𝑁 → (𝐶𝑖) ∈ (Base‘𝑅)))
1716, 4eleq2s 2748 . . . . . . . 8 (𝐶𝑉 → (𝑖𝑁 → (𝐶𝑖) ∈ (Base‘𝑅)))
18173ad2ant2 1103 . . . . . . 7 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑖𝑁 → (𝐶𝑖) ∈ (Base‘𝑅)))
1918adantl 481 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → (𝑖𝑁 → (𝐶𝑖) ∈ (Base‘𝑅)))
2019imp 444 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) ∧ 𝑖𝑁) → (𝐶𝑖) ∈ (Base‘𝑅))
21203adant3 1101 . . . 4 (((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) ∧ 𝑖𝑁𝑗𝑁) → (𝐶𝑖) ∈ (Base‘𝑅))
22 simp2 1082 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
23 simp3 1083 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
242eleq2i 2722 . . . . . . . . 9 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
2524biimpi 206 . . . . . . . 8 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
26253ad2ant1 1102 . . . . . . 7 ((𝑀𝐵𝐶𝑉𝐾𝑁) → 𝑀 ∈ (Base‘𝐴))
2726adantl 481 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → 𝑀 ∈ (Base‘𝐴))
28273ad2ant1 1102 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) ∧ 𝑖𝑁𝑗𝑁) → 𝑀 ∈ (Base‘𝐴))
291, 7matecl 20279 . . . . 5 ((𝑖𝑁𝑗𝑁𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
3022, 23, 28, 29syl3anc 1366 . . . 4 (((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
3121, 30ifcld 4164 . . 3 (((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗)) ∈ (Base‘𝑅))
321, 7, 2, 11, 12, 31matbas2d 20277 . 2 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))) ∈ 𝐵)
336, 32eqeltrd 2730 1 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  Vcvv 3231  ifcif 4119  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑚 cmap 7899  Fincfn 7997  Basecbs 15904  Ringcrg 18593   Mat cmat 20261   matRepV cmatrepV 20411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-prds 16155  df-pws 16157  df-sra 19220  df-rgmod 19221  df-dsmm 20124  df-frlm 20139  df-mat 20262  df-marepv 20413
This theorem is referenced by:  ma1repvcl  20424
  Copyright terms: Public domain W3C validator