MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marepvfval Structured version   Visualization version   GIF version

Theorem marepvfval 20573
Description: First substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvfval.a 𝐴 = (𝑁 Mat 𝑅)
marepvfval.b 𝐵 = (Base‘𝐴)
marepvfval.q 𝑄 = (𝑁 matRepV 𝑅)
marepvfval.v 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
Assertion
Ref Expression
marepvfval 𝑄 = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)))))
Distinct variable groups:   𝐵,𝑚,𝑣   𝑖,𝑁,𝑗,𝑘,𝑚,𝑣   𝑅,𝑖,𝑗,𝑘,𝑚,𝑣   𝑚,𝑉,𝑣
Allowed substitution hints:   𝐴(𝑣,𝑖,𝑗,𝑘,𝑚)   𝐵(𝑖,𝑗,𝑘)   𝑄(𝑣,𝑖,𝑗,𝑘,𝑚)   𝑉(𝑖,𝑗,𝑘)

Proof of Theorem marepvfval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marepvfval.q . 2 𝑄 = (𝑁 matRepV 𝑅)
2 marepvfval.b . . . . . 6 𝐵 = (Base‘𝐴)
3 fvex 6362 . . . . . 6 (Base‘𝐴) ∈ V
42, 3eqeltri 2835 . . . . 5 𝐵 ∈ V
5 marepvfval.v . . . . . . 7 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
6 ovex 6841 . . . . . . 7 ((Base‘𝑅) ↑𝑚 𝑁) ∈ V
75, 6eqeltri 2835 . . . . . 6 𝑉 ∈ V
87a1i 11 . . . . 5 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝑉 ∈ V)
9 mpt2exga 7414 . . . . 5 ((𝐵 ∈ V ∧ 𝑉 ∈ V) → (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) ∈ V)
104, 8, 9sylancr 698 . . . 4 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) ∈ V)
11 oveq12 6822 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
12 marepvfval.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
1311, 12syl6eqr 2812 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴)
1413fveq2d 6356 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴))
1514, 2syl6eqr 2812 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
16 fveq2 6352 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
1716adantl 473 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘𝑟) = (Base‘𝑅))
18 simpl 474 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
1917, 18oveq12d 6831 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → ((Base‘𝑟) ↑𝑚 𝑛) = ((Base‘𝑅) ↑𝑚 𝑁))
2019, 5syl6eqr 2812 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → ((Base‘𝑟) ↑𝑚 𝑛) = 𝑉)
21 eqidd 2761 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)) = if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)))
2218, 18, 21mpt2eq123dv 6882 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑖𝑛, 𝑗𝑛 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))
2318, 22mpteq12dv 4885 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑘𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)))) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)))))
2415, 20, 23mpt2eq123dv 6882 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑣 ∈ ((Base‘𝑟) ↑𝑚 𝑛) ↦ (𝑘𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
25 df-marepv 20567 . . . . 5 matRepV = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑣 ∈ ((Base‘𝑟) ↑𝑚 𝑛) ↦ (𝑘𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
2624, 25ovmpt2ga 6955 . . . 4 ((𝑁 ∈ V ∧ 𝑅 ∈ V ∧ (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) ∈ V) → (𝑁 matRepV 𝑅) = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
2710, 26mpd3an3 1574 . . 3 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
2825mpt2ndm0 7040 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = ∅)
29 mpt20 6890 . . . . 5 (𝑚 ∈ ∅, 𝑣 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) = ∅
3028, 29syl6eqr 2812 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = (𝑚 ∈ ∅, 𝑣 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
3112fveq2i 6355 . . . . . . 7 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
322, 31eqtri 2782 . . . . . 6 𝐵 = (Base‘(𝑁 Mat 𝑅))
33 matbas0pc 20417 . . . . . 6 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅)
3432, 33syl5eq 2806 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
35 mpt2eq12 6880 . . . . 5 ((𝐵 = ∅ ∧ 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)) → (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) = (𝑚 ∈ ∅, 𝑣 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
3634, 5, 35sylancl 697 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) = (𝑚 ∈ ∅, 𝑣 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
3730, 36eqtr4d 2797 . . 3 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
3827, 37pm2.61i 176 . 2 (𝑁 matRepV 𝑅) = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)))))
391, 38eqtri 2782 1 𝑄 = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  c0 4058  ifcif 4230  cmpt 4881  cfv 6049  (class class class)co 6813  cmpt2 6815  𝑚 cmap 8023  Basecbs 16059   Mat cmat 20415   matRepV cmatrepV 20565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-slot 16063  df-base 16065  df-mat 20416  df-marepv 20567
This theorem is referenced by:  marepvval0  20574
  Copyright terms: Public domain W3C validator