Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha1 Structured version   Visualization version   GIF version

Theorem marypha1 8292
 Description: (Philip) Hall's marriage theorem, sufficiency: a finite relation contains an injection if there is no subset of its domain which would be forced to violate the pigeonhole principle. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypotheses
Ref Expression
marypha1.a (𝜑𝐴 ∈ Fin)
marypha1.b (𝜑𝐵 ∈ Fin)
marypha1.c (𝜑𝐶 ⊆ (𝐴 × 𝐵))
marypha1.d ((𝜑𝑑𝐴) → 𝑑 ≼ (𝐶𝑑))
Assertion
Ref Expression
marypha1 (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1𝐵)
Distinct variable groups:   𝜑,𝑑,𝑓   𝐴,𝑑,𝑓   𝐶,𝑑,𝑓
Allowed substitution hints:   𝐵(𝑓,𝑑)

Proof of Theorem marypha1
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 4145 . . . . 5 (𝑑 ∈ 𝒫 𝐴𝑑𝐴)
2 marypha1.d . . . . 5 ((𝜑𝑑𝐴) → 𝑑 ≼ (𝐶𝑑))
31, 2sylan2 491 . . . 4 ((𝜑𝑑 ∈ 𝒫 𝐴) → 𝑑 ≼ (𝐶𝑑))
43ralrimiva 2961 . . 3 (𝜑 → ∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶𝑑))
5 marypha1.c . . . . 5 (𝜑𝐶 ⊆ (𝐴 × 𝐵))
6 marypha1.a . . . . . . 7 (𝜑𝐴 ∈ Fin)
7 marypha1.b . . . . . . 7 (𝜑𝐵 ∈ Fin)
8 xpexg 6920 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ V)
96, 7, 8syl2anc 692 . . . . . 6 (𝜑 → (𝐴 × 𝐵) ∈ V)
10 elpw2g 4792 . . . . . 6 ((𝐴 × 𝐵) ∈ V → (𝐶 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝐶 ⊆ (𝐴 × 𝐵)))
119, 10syl 17 . . . . 5 (𝜑 → (𝐶 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝐶 ⊆ (𝐴 × 𝐵)))
125, 11mpbird 247 . . . 4 (𝜑𝐶 ∈ 𝒫 (𝐴 × 𝐵))
13 xpeq2 5094 . . . . . . . . 9 (𝑏 = 𝐵 → (𝐴 × 𝑏) = (𝐴 × 𝐵))
1413pweqd 4140 . . . . . . . 8 (𝑏 = 𝐵 → 𝒫 (𝐴 × 𝑏) = 𝒫 (𝐴 × 𝐵))
1514raleqdv 3136 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V) ↔ ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V)))
1615imbi2d 330 . . . . . 6 (𝑏 = 𝐵 → ((𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V)) ↔ (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V))))
17 marypha1lem 8291 . . . . . . 7 (𝐴 ∈ Fin → (𝑏 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V)))
1817com12 32 . . . . . 6 (𝑏 ∈ Fin → (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V)))
1916, 18vtoclga 3261 . . . . 5 (𝐵 ∈ Fin → (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V)))
207, 6, 19sylc 65 . . . 4 (𝜑 → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V))
21 imaeq1 5425 . . . . . . . 8 (𝑐 = 𝐶 → (𝑐𝑑) = (𝐶𝑑))
2221breq2d 4630 . . . . . . 7 (𝑐 = 𝐶 → (𝑑 ≼ (𝑐𝑑) ↔ 𝑑 ≼ (𝐶𝑑)))
2322ralbidv 2981 . . . . . 6 (𝑐 = 𝐶 → (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) ↔ ∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶𝑑)))
24 pweq 4138 . . . . . . 7 (𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶)
2524rexeqdv 3137 . . . . . 6 (𝑐 = 𝐶 → (∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V ↔ ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1→V))
2623, 25imbi12d 334 . . . . 5 (𝑐 = 𝐶 → ((∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V) ↔ (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶𝑑) → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1→V)))
2726rspcva 3296 . . . 4 ((𝐶 ∈ 𝒫 (𝐴 × 𝐵) ∧ ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V)) → (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶𝑑) → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1→V))
2812, 20, 27syl2anc 692 . . 3 (𝜑 → (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶𝑑) → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1→V))
294, 28mpd 15 . 2 (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1→V)
30 elpwi 4145 . . . . . . 7 (𝑓 ∈ 𝒫 𝐶𝑓𝐶)
3130, 5sylan9ssr 3601 . . . . . 6 ((𝜑𝑓 ∈ 𝒫 𝐶) → 𝑓 ⊆ (𝐴 × 𝐵))
32 rnss 5319 . . . . . 6 (𝑓 ⊆ (𝐴 × 𝐵) → ran 𝑓 ⊆ ran (𝐴 × 𝐵))
3331, 32syl 17 . . . . 5 ((𝜑𝑓 ∈ 𝒫 𝐶) → ran 𝑓 ⊆ ran (𝐴 × 𝐵))
34 rnxpss 5530 . . . . 5 ran (𝐴 × 𝐵) ⊆ 𝐵
3533, 34syl6ss 3599 . . . 4 ((𝜑𝑓 ∈ 𝒫 𝐶) → ran 𝑓𝐵)
36 f1ssr 6069 . . . . 5 ((𝑓:𝐴1-1→V ∧ ran 𝑓𝐵) → 𝑓:𝐴1-1𝐵)
3736expcom 451 . . . 4 (ran 𝑓𝐵 → (𝑓:𝐴1-1→V → 𝑓:𝐴1-1𝐵))
3835, 37syl 17 . . 3 ((𝜑𝑓 ∈ 𝒫 𝐶) → (𝑓:𝐴1-1→V → 𝑓:𝐴1-1𝐵))
3938reximdva 3012 . 2 (𝜑 → (∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1→V → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1𝐵))
4029, 39mpd 15 1 (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ∃wrex 2908  Vcvv 3189   ⊆ wss 3559  𝒫 cpw 4135   class class class wbr 4618   × cxp 5077  ran crn 5080   “ cima 5082  –1-1→wf1 5849   ≼ cdom 7905  Fincfn 7907 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-om 7020  df-1o 7512  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911 This theorem is referenced by:  marypha2  8297
 Copyright terms: Public domain W3C validator