Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2lem3 Structured version   Visualization version   GIF version

Theorem marypha2lem3 8290
 Description: Lemma for marypha2 8292. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypothesis
Ref Expression
marypha2lem.t 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
Assertion
Ref Expression
marypha2lem3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐺𝑇 ↔ ∀𝑥𝐴 (𝐺𝑥) ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝑇(𝑥)

Proof of Theorem marypha2lem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dffn5 6200 . . . . . . 7 (𝐺 Fn 𝐴𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
21biimpi 206 . . . . . 6 (𝐺 Fn 𝐴𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
32adantl 482 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
4 df-mpt 4677 . . . . 5 (𝑥𝐴 ↦ (𝐺𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))}
53, 4syl6eq 2671 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))})
6 marypha2lem.t . . . . . 6 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
76marypha2lem2 8289 . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
87a1i 11 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))})
95, 8sseq12d 3615 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐺𝑇 ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}))
10 ssopab2b 4964 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↔ ∀𝑥𝑦((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥))))
119, 10syl6bb 276 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐺𝑇 ↔ ∀𝑥𝑦((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥)))))
12 19.21v 1865 . . . . 5 (∀𝑦(𝑥𝐴 → (𝑦 = (𝐺𝑥) → 𝑦 ∈ (𝐹𝑥))) ↔ (𝑥𝐴 → ∀𝑦(𝑦 = (𝐺𝑥) → 𝑦 ∈ (𝐹𝑥))))
13 imdistan 724 . . . . . 6 ((𝑥𝐴 → (𝑦 = (𝐺𝑥) → 𝑦 ∈ (𝐹𝑥))) ↔ ((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥))))
1413albii 1744 . . . . 5 (∀𝑦(𝑥𝐴 → (𝑦 = (𝐺𝑥) → 𝑦 ∈ (𝐹𝑥))) ↔ ∀𝑦((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥))))
15 fvex 6160 . . . . . . 7 (𝐺𝑥) ∈ V
16 eleq1 2686 . . . . . . 7 (𝑦 = (𝐺𝑥) → (𝑦 ∈ (𝐹𝑥) ↔ (𝐺𝑥) ∈ (𝐹𝑥)))
1715, 16ceqsalv 3219 . . . . . 6 (∀𝑦(𝑦 = (𝐺𝑥) → 𝑦 ∈ (𝐹𝑥)) ↔ (𝐺𝑥) ∈ (𝐹𝑥))
1817imbi2i 326 . . . . 5 ((𝑥𝐴 → ∀𝑦(𝑦 = (𝐺𝑥) → 𝑦 ∈ (𝐹𝑥))) ↔ (𝑥𝐴 → (𝐺𝑥) ∈ (𝐹𝑥)))
1912, 14, 183bitr3i 290 . . . 4 (∀𝑦((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥))) ↔ (𝑥𝐴 → (𝐺𝑥) ∈ (𝐹𝑥)))
2019albii 1744 . . 3 (∀𝑥𝑦((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥))) ↔ ∀𝑥(𝑥𝐴 → (𝐺𝑥) ∈ (𝐹𝑥)))
21 df-ral 2912 . . 3 (∀𝑥𝐴 (𝐺𝑥) ∈ (𝐹𝑥) ↔ ∀𝑥(𝑥𝐴 → (𝐺𝑥) ∈ (𝐹𝑥)))
2220, 21bitr4i 267 . 2 (∀𝑥𝑦((𝑥𝐴𝑦 = (𝐺𝑥)) → (𝑥𝐴𝑦 ∈ (𝐹𝑥))) ↔ ∀𝑥𝐴 (𝐺𝑥) ∈ (𝐹𝑥))
2311, 22syl6bb 276 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐺𝑇 ↔ ∀𝑥𝐴 (𝐺𝑥) ∈ (𝐹𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384  ∀wal 1478   = wceq 1480   ∈ wcel 1987  ∀wral 2907   ⊆ wss 3556  {csn 4150  ∪ ciun 4487  {copab 4674   ↦ cmpt 4675   × cxp 5074   Fn wfn 5844  ‘cfv 5849 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pr 4869 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3419  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-iota 5812  df-fun 5851  df-fn 5852  df-fv 5857 This theorem is referenced by:  marypha2  8292
 Copyright terms: Public domain W3C validator