MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat0dimscm Structured version   Visualization version   GIF version

Theorem mat0dimscm 20036
Description: The scalar multiplication in the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019.)
Hypothesis
Ref Expression
mat0dim.a 𝐴 = (∅ Mat 𝑅)
Assertion
Ref Expression
mat0dimscm ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠𝐴)∅) = ∅)

Proof of Theorem mat0dimscm
StepHypRef Expression
1 simpl 471 . 2 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
2 0fin 8050 . . . 4 ∅ ∈ Fin
3 mat0dim.a . . . . 5 𝐴 = (∅ Mat 𝑅)
43matlmod 19996 . . . 4 ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
52, 1, 4sylancr 693 . . 3 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → 𝐴 ∈ LMod)
63matsca2 19987 . . . . . . 7 ((∅ ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴))
72, 6mpan 701 . . . . . 6 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝐴))
87fveq2d 6092 . . . . 5 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘𝐴)))
98eleq2d 2672 . . . 4 (𝑅 ∈ Ring → (𝑋 ∈ (Base‘𝑅) ↔ 𝑋 ∈ (Base‘(Scalar‘𝐴))))
109biimpa 499 . . 3 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → 𝑋 ∈ (Base‘(Scalar‘𝐴)))
11 0ex 4713 . . . . . 6 ∅ ∈ V
1211snid 4154 . . . . 5 ∅ ∈ {∅}
133fveq2i 6091 . . . . . 6 (Base‘𝐴) = (Base‘(∅ Mat 𝑅))
14 mat0dimbas0 20033 . . . . . 6 (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅})
1513, 14syl5eq 2655 . . . . 5 (𝑅 ∈ Ring → (Base‘𝐴) = {∅})
1612, 15syl5eleqr 2694 . . . 4 (𝑅 ∈ Ring → ∅ ∈ (Base‘𝐴))
1716adantr 479 . . 3 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → ∅ ∈ (Base‘𝐴))
18 eqid 2609 . . . 4 (Base‘𝐴) = (Base‘𝐴)
19 eqid 2609 . . . 4 (Scalar‘𝐴) = (Scalar‘𝐴)
20 eqid 2609 . . . 4 ( ·𝑠𝐴) = ( ·𝑠𝐴)
21 eqid 2609 . . . 4 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
2218, 19, 20, 21lmodvscl 18649 . . 3 ((𝐴 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐴)) ∧ ∅ ∈ (Base‘𝐴)) → (𝑋( ·𝑠𝐴)∅) ∈ (Base‘𝐴))
235, 10, 17, 22syl3anc 1317 . 2 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠𝐴)∅) ∈ (Base‘𝐴))
2415eleq2d 2672 . . 3 (𝑅 ∈ Ring → ((𝑋( ·𝑠𝐴)∅) ∈ (Base‘𝐴) ↔ (𝑋( ·𝑠𝐴)∅) ∈ {∅}))
25 elsni 4141 . . 3 ((𝑋( ·𝑠𝐴)∅) ∈ {∅} → (𝑋( ·𝑠𝐴)∅) = ∅)
2624, 25syl6bi 241 . 2 (𝑅 ∈ Ring → ((𝑋( ·𝑠𝐴)∅) ∈ (Base‘𝐴) → (𝑋( ·𝑠𝐴)∅) = ∅))
271, 23, 26sylc 62 1 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋( ·𝑠𝐴)∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  c0 3873  {csn 4124  cfv 5790  (class class class)co 6527  Fincfn 7818  Basecbs 15641  Scalarcsca 15717   ·𝑠 cvsca 15718  Ringcrg 18316  LModclmod 18632   Mat cmat 19974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-ot 4133  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-sup 8208  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-fz 12153  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-hom 15739  df-cco 15740  df-0g 15871  df-prds 15877  df-pws 15879  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-grp 17194  df-minusg 17195  df-sbg 17196  df-subg 17360  df-mgp 18259  df-ur 18271  df-ring 18318  df-subrg 18547  df-lmod 18634  df-lss 18700  df-sra 18939  df-rgmod 18940  df-dsmm 19837  df-frlm 19852  df-mat 19975
This theorem is referenced by:  mat0scmat  20105  chpmat0d  20400
  Copyright terms: Public domain W3C validator