![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat1dim0 | Structured version Visualization version GIF version |
Description: The zero of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019.) |
Ref | Expression |
---|---|
mat1dim.a | ⊢ 𝐴 = ({𝐸} Mat 𝑅) |
mat1dim.b | ⊢ 𝐵 = (Base‘𝑅) |
mat1dim.o | ⊢ 𝑂 = 〈𝐸, 𝐸〉 |
Ref | Expression |
---|---|
mat1dim0 | ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (0g‘𝐴) = {〈𝑂, (0g‘𝑅)〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snfi 8201 | . . . . . 6 ⊢ {𝐸} ∈ Fin | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝐸 ∈ 𝑉 → {𝐸} ∈ Fin) |
3 | 2 | anim2i 594 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑅 ∈ Ring ∧ {𝐸} ∈ Fin)) |
4 | 3 | ancomd 466 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → ({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring)) |
5 | mat1dim.a | . . . 4 ⊢ 𝐴 = ({𝐸} Mat 𝑅) | |
6 | eqid 2758 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
7 | 5, 6 | mat0op 20425 | . . 3 ⊢ (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘𝐴) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (0g‘𝑅))) |
8 | 4, 7 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (0g‘𝐴) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (0g‘𝑅))) |
9 | simpr 479 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐸 ∈ 𝑉) | |
10 | fvexd 6362 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (0g‘𝑅) ∈ V) | |
11 | eqid 2758 | . . . . 5 ⊢ (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (0g‘𝑅)) = (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (0g‘𝑅)) | |
12 | eqidd 2759 | . . . . 5 ⊢ (𝑥 = 𝐸 → (0g‘𝑅) = (0g‘𝑅)) | |
13 | eqidd 2759 | . . . . 5 ⊢ (𝑦 = 𝐸 → (0g‘𝑅) = (0g‘𝑅)) | |
14 | 11, 12, 13 | mpt2sn 7434 | . . . 4 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ (0g‘𝑅) ∈ V) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (0g‘𝑅)) = {〈〈𝐸, 𝐸〉, (0g‘𝑅)〉}) |
15 | mat1dim.o | . . . . . . 7 ⊢ 𝑂 = 〈𝐸, 𝐸〉 | |
16 | 15 | eqcomi 2767 | . . . . . 6 ⊢ 〈𝐸, 𝐸〉 = 𝑂 |
17 | 16 | opeq1i 4554 | . . . . 5 ⊢ 〈〈𝐸, 𝐸〉, (0g‘𝑅)〉 = 〈𝑂, (0g‘𝑅)〉 |
18 | 17 | sneqi 4330 | . . . 4 ⊢ {〈〈𝐸, 𝐸〉, (0g‘𝑅)〉} = {〈𝑂, (0g‘𝑅)〉} |
19 | 14, 18 | syl6eq 2808 | . . 3 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ (0g‘𝑅) ∈ V) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (0g‘𝑅)) = {〈𝑂, (0g‘𝑅)〉}) |
20 | 9, 9, 10, 19 | syl3anc 1477 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑥 ∈ {𝐸}, 𝑦 ∈ {𝐸} ↦ (0g‘𝑅)) = {〈𝑂, (0g‘𝑅)〉}) |
21 | 8, 20 | eqtrd 2792 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (0g‘𝐴) = {〈𝑂, (0g‘𝑅)〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1630 ∈ wcel 2137 Vcvv 3338 {csn 4319 〈cop 4325 ‘cfv 6047 (class class class)co 6811 ↦ cmpt2 6813 Fincfn 8119 Basecbs 16057 0gc0g 16300 Ringcrg 18745 Mat cmat 20413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rmo 3056 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-ot 4328 df-uni 4587 df-int 4626 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-om 7229 df-1st 7331 df-2nd 7332 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-1o 7727 df-oadd 7731 df-er 7909 df-map 8023 df-ixp 8073 df-en 8120 df-dom 8121 df-sdom 8122 df-fin 8123 df-sup 8511 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-nn 11211 df-2 11269 df-3 11270 df-4 11271 df-5 11272 df-6 11273 df-7 11274 df-8 11275 df-9 11276 df-n0 11483 df-z 11568 df-dec 11684 df-uz 11878 df-fz 12518 df-struct 16059 df-ndx 16060 df-slot 16061 df-base 16063 df-sets 16064 df-ress 16065 df-plusg 16154 df-mulr 16155 df-sca 16157 df-vsca 16158 df-ip 16159 df-tset 16160 df-ple 16161 df-ds 16164 df-hom 16166 df-cco 16167 df-0g 16302 df-prds 16308 df-pws 16310 df-mgm 17441 df-sgrp 17483 df-mnd 17494 df-grp 17624 df-minusg 17625 df-sbg 17626 df-subg 17790 df-mgp 18688 df-ur 18700 df-ring 18747 df-subrg 18978 df-lmod 19065 df-lss 19133 df-sra 19372 df-rgmod 19373 df-dsmm 20276 df-frlm 20291 df-mat 20414 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |