MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1dimelbas Structured version   Visualization version   GIF version

Theorem mat1dimelbas 20038
Description: A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019.)
Hypotheses
Ref Expression
mat1dim.a 𝐴 = ({𝐸} Mat 𝑅)
mat1dim.b 𝐵 = (Base‘𝑅)
mat1dim.o 𝑂 = ⟨𝐸, 𝐸
Assertion
Ref Expression
mat1dimelbas ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
Distinct variable groups:   𝐵,𝑟   𝐸,𝑟   𝑀,𝑟   𝑅,𝑟   𝑉,𝑟
Allowed substitution hints:   𝐴(𝑟)   𝑂(𝑟)

Proof of Theorem mat1dimelbas
StepHypRef Expression
1 snfi 7900 . . . 4 {𝐸} ∈ Fin
2 simpl 471 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
3 mat1dim.a . . . . . . 7 𝐴 = ({𝐸} Mat 𝑅)
4 mat1dim.b . . . . . . 7 𝐵 = (Base‘𝑅)
53, 4matbas2 19988 . . . . . 6 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵𝑚 ({𝐸} × {𝐸})) = (Base‘𝐴))
65eqcomd 2615 . . . . 5 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐴) = (𝐵𝑚 ({𝐸} × {𝐸})))
76eleq2d 2672 . . . 4 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀 ∈ (𝐵𝑚 ({𝐸} × {𝐸}))))
81, 2, 7sylancr 693 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀 ∈ (𝐵𝑚 ({𝐸} × {𝐸}))))
9 fvex 6098 . . . . 5 (Base‘𝑅) ∈ V
104, 9eqeltri 2683 . . . 4 𝐵 ∈ V
11 snex 4830 . . . . . 6 {𝐸} ∈ V
1211, 11pm3.2i 469 . . . . 5 ({𝐸} ∈ V ∧ {𝐸} ∈ V)
13 xpexg 6835 . . . . 5 (({𝐸} ∈ V ∧ {𝐸} ∈ V) → ({𝐸} × {𝐸}) ∈ V)
1412, 13mp1i 13 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ({𝐸} × {𝐸}) ∈ V)
15 elmapg 7734 . . . 4 ((𝐵 ∈ V ∧ ({𝐸} × {𝐸}) ∈ V) → (𝑀 ∈ (𝐵𝑚 ({𝐸} × {𝐸})) ↔ 𝑀:({𝐸} × {𝐸})⟶𝐵))
1610, 14, 15sylancr 693 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (𝐵𝑚 ({𝐸} × {𝐸})) ↔ 𝑀:({𝐸} × {𝐸})⟶𝐵))
178, 16bitrd 266 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀:({𝐸} × {𝐸})⟶𝐵))
18 xpsng 6297 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
1918anidms 674 . . . . . . 7 (𝐸𝑉 → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2019adantl 480 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2120feq2d 5930 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵𝑀:{⟨𝐸, 𝐸⟩}⟶𝐵))
22 opex 4853 . . . . . . 7 𝐸, 𝐸⟩ ∈ V
2322fsn2 6294 . . . . . 6 (𝑀:{⟨𝐸, 𝐸⟩}⟶𝐵 ↔ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩}))
24 risset 3043 . . . . . . . . . 10 ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵 ↔ ∃𝑟𝐵 𝑟 = (𝑀‘⟨𝐸, 𝐸⟩))
25 eqcom 2616 . . . . . . . . . . 11 (𝑟 = (𝑀‘⟨𝐸, 𝐸⟩) ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
2625rexbii 3022 . . . . . . . . . 10 (∃𝑟𝐵 𝑟 = (𝑀‘⟨𝐸, 𝐸⟩) ↔ ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
2724, 26sylbb 207 . . . . . . . . 9 ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵 → ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
2827ad2antrl 759 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
29 eqeq1 2613 . . . . . . . . . . . 12 (𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
30 opex 4853 . . . . . . . . . . . . . . 15 ⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ ∈ V
31 sneqbg 4309 . . . . . . . . . . . . . . 15 (⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ ∈ V → ({⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩))
3230, 31ax-mp 5 . . . . . . . . . . . . . 14 ({⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩)
33 eqid 2609 . . . . . . . . . . . . . . 15 𝐸, 𝐸⟩ = ⟨𝐸, 𝐸
34 vex 3175 . . . . . . . . . . . . . . . 16 𝑟 ∈ V
3522, 34opth2 4869 . . . . . . . . . . . . . . 15 (⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩ ↔ (⟨𝐸, 𝐸⟩ = ⟨𝐸, 𝐸⟩ ∧ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
3633, 35mpbiran 954 . . . . . . . . . . . . . 14 (⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩ ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
3732, 36bitri 262 . . . . . . . . . . . . 13 ({⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
3837a1i 11 . . . . . . . . . . . 12 (𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} → ({⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
3929, 38bitrd 266 . . . . . . . . . . 11 (𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
4039adantl 480 . . . . . . . . . 10 (((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩}) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
4140adantl 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
4241rexbidv 3033 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → (∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
4328, 42mpbird 245 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩})
4443ex 448 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩}) → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
4523, 44syl5bi 230 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:{⟨𝐸, 𝐸⟩}⟶𝐵 → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
4621, 45sylbid 228 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
47 f1o2sn 6299 . . . . . . . . 9 ((𝐸𝑉𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})–1-1-onto→{𝑟})
48 f1of 6035 . . . . . . . . 9 ({⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})–1-1-onto→{𝑟} → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶{𝑟})
4947, 48syl 17 . . . . . . . 8 ((𝐸𝑉𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶{𝑟})
5049adantll 745 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶{𝑟})
51 snssi 4279 . . . . . . . 8 (𝑟𝐵 → {𝑟} ⊆ 𝐵)
5251adantl 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → {𝑟} ⊆ 𝐵)
5350, 52fssd 5956 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶𝐵)
54 feq1 5925 . . . . . 6 (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶𝐵))
5553, 54syl5ibrcom 235 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} → 𝑀:({𝐸} × {𝐸})⟶𝐵))
5655rexlimdva 3012 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} → 𝑀:({𝐸} × {𝐸})⟶𝐵))
5746, 56impbid 200 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
58 mat1dim.o . . . . . . . . 9 𝑂 = ⟨𝐸, 𝐸
5958eqcomi 2618 . . . . . . . 8 𝐸, 𝐸⟩ = 𝑂
6059opeq1i 4337 . . . . . . 7 ⟨⟨𝐸, 𝐸⟩, 𝑟⟩ = ⟨𝑂, 𝑟
6160sneqi 4135 . . . . . 6 {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} = {⟨𝑂, 𝑟⟩}
6261eqeq2i 2621 . . . . 5 (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ 𝑀 = {⟨𝑂, 𝑟⟩})
6362a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ 𝑀 = {⟨𝑂, 𝑟⟩}))
6463rexbidv 3033 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
6557, 64bitrd 266 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
6617, 65bitrd 266 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wrex 2896  Vcvv 3172  wss 3539  {csn 4124  cop 4130   × cxp 5026  wf 5786  1-1-ontowf1o 5789  cfv 5790  (class class class)co 6527  𝑚 cmap 7721  Fincfn 7818  Basecbs 15641  Ringcrg 18316   Mat cmat 19974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-ot 4133  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-sup 8208  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-fz 12153  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-hom 15739  df-cco 15740  df-0g 15871  df-prds 15877  df-pws 15879  df-sra 18939  df-rgmod 18940  df-dsmm 19837  df-frlm 19852  df-mat 19975
This theorem is referenced by:  mat1dimbas  20039  mat1dimcrng  20044  mat1scmat  20106
  Copyright terms: Public domain W3C validator