MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1dimelbas Structured version   Visualization version   GIF version

Theorem mat1dimelbas 21010
Description: A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019.)
Hypotheses
Ref Expression
mat1dim.a 𝐴 = ({𝐸} Mat 𝑅)
mat1dim.b 𝐵 = (Base‘𝑅)
mat1dim.o 𝑂 = ⟨𝐸, 𝐸
Assertion
Ref Expression
mat1dimelbas ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
Distinct variable groups:   𝐵,𝑟   𝐸,𝑟   𝑀,𝑟   𝑅,𝑟   𝑉,𝑟
Allowed substitution hints:   𝐴(𝑟)   𝑂(𝑟)

Proof of Theorem mat1dimelbas
StepHypRef Expression
1 snfi 8583 . . . 4 {𝐸} ∈ Fin
2 simpl 483 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
3 mat1dim.a . . . . . . 7 𝐴 = ({𝐸} Mat 𝑅)
4 mat1dim.b . . . . . . 7 𝐵 = (Base‘𝑅)
53, 4matbas2 20960 . . . . . 6 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵m ({𝐸} × {𝐸})) = (Base‘𝐴))
65eqcomd 2827 . . . . 5 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐴) = (𝐵m ({𝐸} × {𝐸})))
76eleq2d 2898 . . . 4 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀 ∈ (𝐵m ({𝐸} × {𝐸}))))
81, 2, 7sylancr 587 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀 ∈ (𝐵m ({𝐸} × {𝐸}))))
94fvexi 6678 . . . 4 𝐵 ∈ V
10 snex 5323 . . . . . 6 {𝐸} ∈ V
1110, 10pm3.2i 471 . . . . 5 ({𝐸} ∈ V ∧ {𝐸} ∈ V)
12 xpexg 7461 . . . . 5 (({𝐸} ∈ V ∧ {𝐸} ∈ V) → ({𝐸} × {𝐸}) ∈ V)
1311, 12mp1i 13 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ({𝐸} × {𝐸}) ∈ V)
14 elmapg 8409 . . . 4 ((𝐵 ∈ V ∧ ({𝐸} × {𝐸}) ∈ V) → (𝑀 ∈ (𝐵m ({𝐸} × {𝐸})) ↔ 𝑀:({𝐸} × {𝐸})⟶𝐵))
159, 13, 14sylancr 587 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (𝐵m ({𝐸} × {𝐸})) ↔ 𝑀:({𝐸} × {𝐸})⟶𝐵))
168, 15bitrd 280 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀:({𝐸} × {𝐸})⟶𝐵))
17 xpsng 6894 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
1817anidms 567 . . . . . . 7 (𝐸𝑉 → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
1918adantl 482 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2019feq2d 6494 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵𝑀:{⟨𝐸, 𝐸⟩}⟶𝐵))
21 opex 5348 . . . . . . 7 𝐸, 𝐸⟩ ∈ V
2221fsn2 6891 . . . . . 6 (𝑀:{⟨𝐸, 𝐸⟩}⟶𝐵 ↔ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩}))
23 risset 3267 . . . . . . . . . 10 ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵 ↔ ∃𝑟𝐵 𝑟 = (𝑀‘⟨𝐸, 𝐸⟩))
24 eqcom 2828 . . . . . . . . . . 11 (𝑟 = (𝑀‘⟨𝐸, 𝐸⟩) ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
2524rexbii 3247 . . . . . . . . . 10 (∃𝑟𝐵 𝑟 = (𝑀‘⟨𝐸, 𝐸⟩) ↔ ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
2623, 25sylbb 220 . . . . . . . . 9 ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵 → ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
2726ad2antrl 724 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
28 eqeq1 2825 . . . . . . . . . . . 12 (𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
29 opex 5348 . . . . . . . . . . . . . 14 ⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ ∈ V
30 sneqbg 4768 . . . . . . . . . . . . . 14 (⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ ∈ V → ({⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩))
3129, 30ax-mp 5 . . . . . . . . . . . . 13 ({⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩)
32 eqid 2821 . . . . . . . . . . . . . 14 𝐸, 𝐸⟩ = ⟨𝐸, 𝐸
33 vex 3498 . . . . . . . . . . . . . . 15 𝑟 ∈ V
3421, 33opth2 5364 . . . . . . . . . . . . . 14 (⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩ ↔ (⟨𝐸, 𝐸⟩ = ⟨𝐸, 𝐸⟩ ∧ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
3532, 34mpbiran 705 . . . . . . . . . . . . 13 (⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩ ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
3631, 35bitri 276 . . . . . . . . . . . 12 ({⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
3728, 36syl6bb 288 . . . . . . . . . . 11 (𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
3837adantl 482 . . . . . . . . . 10 (((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩}) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
3938adantl 482 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
4039rexbidv 3297 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → (∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
4127, 40mpbird 258 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩})
4241ex 413 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩}) → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
4322, 42syl5bi 243 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:{⟨𝐸, 𝐸⟩}⟶𝐵 → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
4420, 43sylbid 241 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
45 f1o2sn 6897 . . . . . . . . 9 ((𝐸𝑉𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})–1-1-onto→{𝑟})
46 f1of 6609 . . . . . . . . 9 ({⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})–1-1-onto→{𝑟} → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶{𝑟})
4745, 46syl 17 . . . . . . . 8 ((𝐸𝑉𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶{𝑟})
4847adantll 710 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶{𝑟})
49 snssi 4735 . . . . . . . 8 (𝑟𝐵 → {𝑟} ⊆ 𝐵)
5049adantl 482 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → {𝑟} ⊆ 𝐵)
5148, 50fssd 6522 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶𝐵)
52 feq1 6489 . . . . . 6 (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶𝐵))
5351, 52syl5ibrcom 248 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} → 𝑀:({𝐸} × {𝐸})⟶𝐵))
5453rexlimdva 3284 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} → 𝑀:({𝐸} × {𝐸})⟶𝐵))
5544, 54impbid 213 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
56 mat1dim.o . . . . . . . . 9 𝑂 = ⟨𝐸, 𝐸
5756eqcomi 2830 . . . . . . . 8 𝐸, 𝐸⟩ = 𝑂
5857opeq1i 4800 . . . . . . 7 ⟨⟨𝐸, 𝐸⟩, 𝑟⟩ = ⟨𝑂, 𝑟
5958sneqi 4570 . . . . . 6 {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} = {⟨𝑂, 𝑟⟩}
6059eqeq2i 2834 . . . . 5 (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ 𝑀 = {⟨𝑂, 𝑟⟩})
6160a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ 𝑀 = {⟨𝑂, 𝑟⟩}))
6261rexbidv 3297 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
6355, 62bitrd 280 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
6416, 63bitrd 280 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wrex 3139  Vcvv 3495  wss 3935  {csn 4559  cop 4565   × cxp 5547  wf 6345  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7145  m cmap 8396  Fincfn 8498  Basecbs 16473  Ringcrg 19228   Mat cmat 20946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-ot 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-sup 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-fz 12883  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-hom 16579  df-cco 16580  df-0g 16705  df-prds 16711  df-pws 16713  df-sra 19875  df-rgmod 19876  df-dsmm 20806  df-frlm 20821  df-mat 20947
This theorem is referenced by:  mat1dimbas  21011  mat1dimcrng  21016  mat1scmat  21078
  Copyright terms: Public domain W3C validator