MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatbas Structured version   Visualization version   GIF version

Theorem mat2pmatbas 21262
Description: The result of a matrix transformation is a polynomial matrix. (Contributed by AV, 1-Aug-2019.)
Hypotheses
Ref Expression
mat2pmatbas.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatbas.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatbas.b 𝐵 = (Base‘𝐴)
mat2pmatbas.p 𝑃 = (Poly1𝑅)
mat2pmatbas.c 𝐶 = (𝑁 Mat 𝑃)
Assertion
Ref Expression
mat2pmatbas ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝐶))

Proof of Theorem mat2pmatbas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatbas.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
2 mat2pmatbas.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 mat2pmatbas.b . . 3 𝐵 = (Base‘𝐴)
4 mat2pmatbas.p . . 3 𝑃 = (Poly1𝑅)
5 eqid 2818 . . 3 (algSc‘𝑃) = (algSc‘𝑃)
61, 2, 3, 4, 5mat2pmatval 21260 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ ((algSc‘𝑃)‘(𝑥𝑀𝑦))))
7 mat2pmatbas.c . . 3 𝐶 = (𝑁 Mat 𝑃)
8 eqid 2818 . . 3 (Base‘𝑃) = (Base‘𝑃)
9 eqid 2818 . . 3 (Base‘𝐶) = (Base‘𝐶)
10 simp1 1128 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
114fvexi 6677 . . . 4 𝑃 ∈ V
1211a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑃 ∈ V)
13 eqid 2818 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
144ply1ring 20344 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
15143ad2ant2 1126 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
16153ad2ant1 1125 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥𝑁𝑦𝑁) → 𝑃 ∈ Ring)
174ply1lmod 20348 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
18173ad2ant2 1126 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑃 ∈ LMod)
19183ad2ant1 1125 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥𝑁𝑦𝑁) → 𝑃 ∈ LMod)
20 eqid 2818 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
215, 13, 16, 19, 20, 8asclf 20039 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥𝑁𝑦𝑁) → (algSc‘𝑃):(Base‘(Scalar‘𝑃))⟶(Base‘𝑃))
224ply1sca 20349 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
2322fveq2d 6667 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
24233ad2ant2 1126 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
25243ad2ant1 1125 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥𝑁𝑦𝑁) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
2625feq2d 6493 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥𝑁𝑦𝑁) → ((algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃) ↔ (algSc‘𝑃):(Base‘(Scalar‘𝑃))⟶(Base‘𝑃)))
2721, 26mpbird 258 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥𝑁𝑦𝑁) → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
28 simp2 1129 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥𝑁𝑦𝑁) → 𝑥𝑁)
29 simp3 1130 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥𝑁𝑦𝑁) → 𝑦𝑁)
303eleq2i 2901 . . . . . . . 8 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
3130biimpi 217 . . . . . . 7 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
32313ad2ant3 1127 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀 ∈ (Base‘𝐴))
33323ad2ant1 1125 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥𝑁𝑦𝑁) → 𝑀 ∈ (Base‘𝐴))
34 eqid 2818 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
352, 34matecl 20962 . . . . 5 ((𝑥𝑁𝑦𝑁𝑀 ∈ (Base‘𝐴)) → (𝑥𝑀𝑦) ∈ (Base‘𝑅))
3628, 29, 33, 35syl3anc 1363 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑀𝑦) ∈ (Base‘𝑅))
3727, 36ffvelrnd 6844 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥𝑁𝑦𝑁) → ((algSc‘𝑃)‘(𝑥𝑀𝑦)) ∈ (Base‘𝑃))
387, 8, 9, 10, 12, 37matbas2d 20960 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑥𝑁, 𝑦𝑁 ↦ ((algSc‘𝑃)‘(𝑥𝑀𝑦))) ∈ (Base‘𝐶))
396, 38eqeltrd 2910 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1079   = wceq 1528  wcel 2105  Vcvv 3492  wf 6344  cfv 6348  (class class class)co 7145  cmpo 7147  Fincfn 8497  Basecbs 16471  Scalarcsca 16556  Ringcrg 19226  LModclmod 19563  algSccascl 20012  Poly1cpl1 20273   Mat cmat 20944   matToPolyMat cmat2pmat 21240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-ot 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-ofr 7399  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-hom 16577  df-cco 16578  df-0g 16703  df-gsum 16704  df-prds 16709  df-pws 16711  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mulg 18163  df-subg 18214  df-ghm 18294  df-cntz 18385  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-subrg 19462  df-lmod 19565  df-lss 19633  df-sra 19873  df-rgmod 19874  df-ascl 20015  df-psr 20064  df-mpl 20066  df-opsr 20068  df-psr1 20276  df-ply1 20278  df-dsmm 20804  df-frlm 20819  df-mat 20945  df-mat2pmat 21243
This theorem is referenced by:  mat2pmatbas0  21263  m2cpm  21277  m2pmfzmap  21283  monmatcollpw  21315  pmatcollpw  21317  chmatcl  21364  chmatval  21365  chpmat1dlem  21371  chpmat1d  21372  chpdmatlem1  21374  chpdmatlem2  21375  chpdmatlem3  21376  chfacfisf  21390  chfacfscmulgsum  21396  chfacfpmmulcl  21397  chfacfpmmul0  21398  chfacfpmmulgsum  21400  chfacfpmmulgsum2  21401  cayhamlem1  21402  cpmadugsumlemC  21411  cpmadugsumlemF  21412  cpmadugsumfi  21413  cpmidgsum2  21415
  Copyright terms: Public domain W3C validator