MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matgsumcl Structured version   Visualization version   GIF version

Theorem matgsumcl 21072
Description: Closure of a group sum over the diagonal coefficients of a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
madetsumid.a 𝐴 = (𝑁 Mat 𝑅)
madetsumid.b 𝐵 = (Base‘𝐴)
madetsumid.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
matgsumcl ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑈 Σg (𝑟𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅))
Distinct variable groups:   𝐵,𝑟   𝑀,𝑟   𝑁,𝑟   𝑅,𝑟
Allowed substitution hints:   𝐴(𝑟)   𝑈(𝑟)

Proof of Theorem matgsumcl
StepHypRef Expression
1 madetsumid.u . . 3 𝑈 = (mulGrp‘𝑅)
2 eqid 2824 . . 3 (Base‘𝑅) = (Base‘𝑅)
31, 2mgpbas 19248 . 2 (Base‘𝑅) = (Base‘𝑈)
41crngmgp 19308 . . 3 (𝑅 ∈ CRing → 𝑈 ∈ CMnd)
54adantr 483 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑈 ∈ CMnd)
6 madetsumid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
7 madetsumid.b . . . . 5 𝐵 = (Base‘𝐴)
86, 7matrcl 21024 . . . 4 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98adantl 484 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
109simpld 497 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
11 simpr 487 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀𝐵)
126, 2, 7matbas2i 21034 . . . . . 6 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
13 elmapi 8431 . . . . . 6 (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
1411, 12, 133syl 18 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
1514adantr 483 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑟𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
16 simpr 487 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑟𝑁) → 𝑟𝑁)
1715, 16, 16fovrnd 7323 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑟𝑁) → (𝑟𝑀𝑟) ∈ (Base‘𝑅))
1817ralrimiva 3185 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ∀𝑟𝑁 (𝑟𝑀𝑟) ∈ (Base‘𝑅))
193, 5, 10, 18gsummptcl 19090 1 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑈 Σg (𝑟𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  Vcvv 3497  cmpt 5149   × cxp 5556  wf 6354  cfv 6358  (class class class)co 7159  m cmap 8409  Fincfn 8512  Basecbs 16486   Σg cgsu 16717  CMndccmn 18909  mulGrpcmgp 19242  CRingccrg 19301   Mat cmat 21019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-ot 4579  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-hom 16592  df-cco 16593  df-0g 16718  df-gsum 16719  df-prds 16724  df-pws 16726  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-cntz 18450  df-cmn 18911  df-mgp 19243  df-cring 19303  df-sra 19947  df-rgmod 19948  df-dsmm 20879  df-frlm 20894  df-mat 21020
This theorem is referenced by:  madetsumid  21073
  Copyright terms: Public domain W3C validator