MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matinv Structured version   Visualization version   GIF version

Theorem matinv 20240
Description: The inverse of a matrix is the adjunct of the matrix multiplied with the inverse of the determinant of the matrix if the determinant is a unit in the underlying ring. Proposition 4.16 in [Lang] p. 518. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Hypotheses
Ref Expression
matinv.a 𝐴 = (𝑁 Mat 𝑅)
matinv.j 𝐽 = (𝑁 maAdju 𝑅)
matinv.d 𝐷 = (𝑁 maDet 𝑅)
matinv.b 𝐵 = (Base‘𝐴)
matinv.u 𝑈 = (Unit‘𝐴)
matinv.v 𝑉 = (Unit‘𝑅)
matinv.h 𝐻 = (invr𝑅)
matinv.i 𝐼 = (invr𝐴)
matinv.t = ( ·𝑠𝐴)
Assertion
Ref Expression
matinv ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (𝑀𝑈 ∧ (𝐼𝑀) = ((𝐻‘(𝐷𝑀)) (𝐽𝑀))))

Proof of Theorem matinv
StepHypRef Expression
1 matinv.b . 2 𝐵 = (Base‘𝐴)
2 eqid 2605 . 2 (.r𝐴) = (.r𝐴)
3 eqid 2605 . 2 (1r𝐴) = (1r𝐴)
4 matinv.u . 2 𝑈 = (Unit‘𝐴)
5 matinv.i . 2 𝐼 = (invr𝐴)
6 matinv.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
76, 1matrcl 19975 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
87simpld 473 . . . . 5 (𝑀𝐵𝑁 ∈ Fin)
983ad2ant2 1075 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → 𝑁 ∈ Fin)
10 simp1 1053 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → 𝑅 ∈ CRing)
116matassa 20007 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ AssAlg)
129, 10, 11syl2anc 690 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → 𝐴 ∈ AssAlg)
13 assaring 19083 . . 3 (𝐴 ∈ AssAlg → 𝐴 ∈ Ring)
1412, 13syl 17 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → 𝐴 ∈ Ring)
15 simp2 1054 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → 𝑀𝐵)
16 assalmod 19082 . . . 4 (𝐴 ∈ AssAlg → 𝐴 ∈ LMod)
1712, 16syl 17 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → 𝐴 ∈ LMod)
18 crngring 18323 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
19183ad2ant1 1074 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → 𝑅 ∈ Ring)
20 simp3 1055 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (𝐷𝑀) ∈ 𝑉)
21 matinv.v . . . . . 6 𝑉 = (Unit‘𝑅)
22 matinv.h . . . . . 6 𝐻 = (invr𝑅)
23 eqid 2605 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2421, 22, 23ringinvcl 18441 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐷𝑀) ∈ 𝑉) → (𝐻‘(𝐷𝑀)) ∈ (Base‘𝑅))
2519, 20, 24syl2anc 690 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (𝐻‘(𝐷𝑀)) ∈ (Base‘𝑅))
266matsca2 19983 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝐴))
279, 10, 26syl2anc 690 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → 𝑅 = (Scalar‘𝐴))
2827fveq2d 6088 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (Base‘𝑅) = (Base‘(Scalar‘𝐴)))
2925, 28eleqtrd 2685 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (𝐻‘(𝐷𝑀)) ∈ (Base‘(Scalar‘𝐴)))
30 matinv.j . . . . . 6 𝐽 = (𝑁 maAdju 𝑅)
316, 30, 1maduf 20204 . . . . 5 (𝑅 ∈ CRing → 𝐽:𝐵𝐵)
32313ad2ant1 1074 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → 𝐽:𝐵𝐵)
3332, 15ffvelrnd 6249 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (𝐽𝑀) ∈ 𝐵)
34 eqid 2605 . . . 4 (Scalar‘𝐴) = (Scalar‘𝐴)
35 matinv.t . . . 4 = ( ·𝑠𝐴)
36 eqid 2605 . . . 4 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
371, 34, 35, 36lmodvscl 18645 . . 3 ((𝐴 ∈ LMod ∧ (𝐻‘(𝐷𝑀)) ∈ (Base‘(Scalar‘𝐴)) ∧ (𝐽𝑀) ∈ 𝐵) → ((𝐻‘(𝐷𝑀)) (𝐽𝑀)) ∈ 𝐵)
3817, 29, 33, 37syl3anc 1317 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → ((𝐻‘(𝐷𝑀)) (𝐽𝑀)) ∈ 𝐵)
391, 34, 36, 35, 2assaassr 19081 . . . 4 ((𝐴 ∈ AssAlg ∧ ((𝐻‘(𝐷𝑀)) ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑀𝐵 ∧ (𝐽𝑀) ∈ 𝐵)) → (𝑀(.r𝐴)((𝐻‘(𝐷𝑀)) (𝐽𝑀))) = ((𝐻‘(𝐷𝑀)) (𝑀(.r𝐴)(𝐽𝑀))))
4012, 29, 15, 33, 39syl13anc 1319 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (𝑀(.r𝐴)((𝐻‘(𝐷𝑀)) (𝐽𝑀))) = ((𝐻‘(𝐷𝑀)) (𝑀(.r𝐴)(𝐽𝑀))))
41 matinv.d . . . . . 6 𝐷 = (𝑁 maDet 𝑅)
426, 1, 30, 41, 3, 2, 35madurid 20207 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → (𝑀(.r𝐴)(𝐽𝑀)) = ((𝐷𝑀) (1r𝐴)))
4315, 10, 42syl2anc 690 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (𝑀(.r𝐴)(𝐽𝑀)) = ((𝐷𝑀) (1r𝐴)))
4443oveq2d 6539 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → ((𝐻‘(𝐷𝑀)) (𝑀(.r𝐴)(𝐽𝑀))) = ((𝐻‘(𝐷𝑀)) ((𝐷𝑀) (1r𝐴))))
45 eqid 2605 . . . . . . . 8 (.r𝑅) = (.r𝑅)
46 eqid 2605 . . . . . . . 8 (1r𝑅) = (1r𝑅)
4721, 22, 45, 46unitlinv 18442 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐷𝑀) ∈ 𝑉) → ((𝐻‘(𝐷𝑀))(.r𝑅)(𝐷𝑀)) = (1r𝑅))
4819, 20, 47syl2anc 690 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → ((𝐻‘(𝐷𝑀))(.r𝑅)(𝐷𝑀)) = (1r𝑅))
4927fveq2d 6088 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (.r𝑅) = (.r‘(Scalar‘𝐴)))
5049oveqd 6540 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → ((𝐻‘(𝐷𝑀))(.r𝑅)(𝐷𝑀)) = ((𝐻‘(𝐷𝑀))(.r‘(Scalar‘𝐴))(𝐷𝑀)))
5127fveq2d 6088 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (1r𝑅) = (1r‘(Scalar‘𝐴)))
5248, 50, 513eqtr3d 2647 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → ((𝐻‘(𝐷𝑀))(.r‘(Scalar‘𝐴))(𝐷𝑀)) = (1r‘(Scalar‘𝐴)))
5352oveq1d 6538 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (((𝐻‘(𝐷𝑀))(.r‘(Scalar‘𝐴))(𝐷𝑀)) (1r𝐴)) = ((1r‘(Scalar‘𝐴)) (1r𝐴)))
5423, 21unitcl 18424 . . . . . . 7 ((𝐷𝑀) ∈ 𝑉 → (𝐷𝑀) ∈ (Base‘𝑅))
55543ad2ant3 1076 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (𝐷𝑀) ∈ (Base‘𝑅))
5655, 28eleqtrd 2685 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (𝐷𝑀) ∈ (Base‘(Scalar‘𝐴)))
571, 3ringidcl 18333 . . . . . 6 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
5814, 57syl 17 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (1r𝐴) ∈ 𝐵)
59 eqid 2605 . . . . . 6 (.r‘(Scalar‘𝐴)) = (.r‘(Scalar‘𝐴))
601, 34, 35, 36, 59lmodvsass 18653 . . . . 5 ((𝐴 ∈ LMod ∧ ((𝐻‘(𝐷𝑀)) ∈ (Base‘(Scalar‘𝐴)) ∧ (𝐷𝑀) ∈ (Base‘(Scalar‘𝐴)) ∧ (1r𝐴) ∈ 𝐵)) → (((𝐻‘(𝐷𝑀))(.r‘(Scalar‘𝐴))(𝐷𝑀)) (1r𝐴)) = ((𝐻‘(𝐷𝑀)) ((𝐷𝑀) (1r𝐴))))
6117, 29, 56, 58, 60syl13anc 1319 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (((𝐻‘(𝐷𝑀))(.r‘(Scalar‘𝐴))(𝐷𝑀)) (1r𝐴)) = ((𝐻‘(𝐷𝑀)) ((𝐷𝑀) (1r𝐴))))
62 eqid 2605 . . . . . 6 (1r‘(Scalar‘𝐴)) = (1r‘(Scalar‘𝐴))
631, 34, 35, 62lmodvs1 18656 . . . . 5 ((𝐴 ∈ LMod ∧ (1r𝐴) ∈ 𝐵) → ((1r‘(Scalar‘𝐴)) (1r𝐴)) = (1r𝐴))
6417, 58, 63syl2anc 690 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → ((1r‘(Scalar‘𝐴)) (1r𝐴)) = (1r𝐴))
6553, 61, 643eqtr3d 2647 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → ((𝐻‘(𝐷𝑀)) ((𝐷𝑀) (1r𝐴))) = (1r𝐴))
6640, 44, 653eqtrd 2643 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (𝑀(.r𝐴)((𝐻‘(𝐷𝑀)) (𝐽𝑀))) = (1r𝐴))
671, 34, 36, 35, 2assaass 19080 . . . 4 ((𝐴 ∈ AssAlg ∧ ((𝐻‘(𝐷𝑀)) ∈ (Base‘(Scalar‘𝐴)) ∧ (𝐽𝑀) ∈ 𝐵𝑀𝐵)) → (((𝐻‘(𝐷𝑀)) (𝐽𝑀))(.r𝐴)𝑀) = ((𝐻‘(𝐷𝑀)) ((𝐽𝑀)(.r𝐴)𝑀)))
6812, 29, 33, 15, 67syl13anc 1319 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (((𝐻‘(𝐷𝑀)) (𝐽𝑀))(.r𝐴)𝑀) = ((𝐻‘(𝐷𝑀)) ((𝐽𝑀)(.r𝐴)𝑀)))
696, 1, 30, 41, 3, 2, 35madulid 20208 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → ((𝐽𝑀)(.r𝐴)𝑀) = ((𝐷𝑀) (1r𝐴)))
7015, 10, 69syl2anc 690 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → ((𝐽𝑀)(.r𝐴)𝑀) = ((𝐷𝑀) (1r𝐴)))
7170oveq2d 6539 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → ((𝐻‘(𝐷𝑀)) ((𝐽𝑀)(.r𝐴)𝑀)) = ((𝐻‘(𝐷𝑀)) ((𝐷𝑀) (1r𝐴))))
7268, 71, 653eqtrd 2643 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (((𝐻‘(𝐷𝑀)) (𝐽𝑀))(.r𝐴)𝑀) = (1r𝐴))
731, 2, 3, 4, 5, 14, 15, 38, 66, 72invrvald 20239 1 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (𝑀𝑈 ∧ (𝐼𝑀) = ((𝐻‘(𝐷𝑀)) (𝐽𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1975  Vcvv 3168  wf 5782  cfv 5786  (class class class)co 6523  Fincfn 7814  Basecbs 15637  .rcmulr 15711  Scalarcsca 15713   ·𝑠 cvsca 15714  1rcur 18266  Ringcrg 18312  CRingccrg 18313  Unitcui 18404  invrcinvr 18436  LModclmod 18628  AssAlgcasa 19072   Mat cmat 19970   maDet cmdat 20147   maAdju cmadu 20195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-addf 9867  ax-mulf 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-xor 1456  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-ot 4129  df-uni 4363  df-int 4401  df-iun 4447  df-iin 4448  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-of 6768  df-om 6931  df-1st 7032  df-2nd 7033  df-supp 7156  df-tpos 7212  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-2o 7421  df-oadd 7424  df-er 7602  df-map 7719  df-pm 7720  df-ixp 7768  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-fsupp 8132  df-sup 8204  df-oi 8271  df-card 8621  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-7 10927  df-8 10928  df-9 10929  df-n0 11136  df-z 11207  df-dec 11322  df-uz 11516  df-rp 11661  df-fz 12149  df-fzo 12286  df-seq 12615  df-exp 12674  df-hash 12931  df-word 13096  df-lsw 13097  df-concat 13098  df-s1 13099  df-substr 13100  df-splice 13101  df-reverse 13102  df-s2 13386  df-struct 15639  df-ndx 15640  df-slot 15641  df-base 15642  df-sets 15643  df-ress 15644  df-plusg 15723  df-mulr 15724  df-starv 15725  df-sca 15726  df-vsca 15727  df-ip 15728  df-tset 15729  df-ple 15730  df-ds 15733  df-unif 15734  df-hom 15735  df-cco 15736  df-0g 15867  df-gsum 15868  df-prds 15873  df-pws 15875  df-mre 16011  df-mrc 16012  df-acs 16014  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-mhm 17100  df-submnd 17101  df-grp 17190  df-minusg 17191  df-sbg 17192  df-mulg 17306  df-subg 17356  df-ghm 17423  df-gim 17466  df-cntz 17515  df-oppg 17541  df-symg 17563  df-pmtr 17627  df-psgn 17676  df-evpm 17677  df-cmn 17960  df-abl 17961  df-mgp 18255  df-ur 18267  df-ring 18314  df-cring 18315  df-oppr 18388  df-dvdsr 18406  df-unit 18407  df-invr 18437  df-dvr 18448  df-rnghom 18480  df-drng 18514  df-subrg 18543  df-lmod 18630  df-lss 18696  df-sra 18935  df-rgmod 18936  df-assa 19075  df-cnfld 19510  df-zring 19580  df-zrh 19612  df-dsmm 19833  df-frlm 19848  df-mamu 19947  df-mat 19971  df-mdet 20148  df-madu 20197
This theorem is referenced by:  matunit  20241
  Copyright terms: Public domain W3C validator