MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matmulr Structured version   Visualization version   GIF version

Theorem matmulr 20238
Description: Multiplication in the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypotheses
Ref Expression
matmulr.a 𝐴 = (𝑁 Mat 𝑅)
matmulr.t · = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
Assertion
Ref Expression
matmulr ((𝑁 ∈ Fin ∧ 𝑅𝑉) → · = (.r𝐴))

Proof of Theorem matmulr
StepHypRef Expression
1 ovex 6675 . . . 4 (𝑅 freeLMod (𝑁 × 𝑁)) ∈ V
2 matmulr.t . . . . 5 · = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
3 ovex 6675 . . . . 5 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) ∈ V
42, 3eqeltri 2696 . . . 4 · ∈ V
51, 4pm3.2i 471 . . 3 ((𝑅 freeLMod (𝑁 × 𝑁)) ∈ V ∧ · ∈ V)
6 mulrid 15991 . . . 4 .r = Slot (.r‘ndx)
76setsid 15908 . . 3 (((𝑅 freeLMod (𝑁 × 𝑁)) ∈ V ∧ · ∈ V) → · = (.r‘((𝑅 freeLMod (𝑁 × 𝑁)) sSet ⟨(.r‘ndx), · ⟩)))
85, 7mp1i 13 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → · = (.r‘((𝑅 freeLMod (𝑁 × 𝑁)) sSet ⟨(.r‘ndx), · ⟩)))
9 matmulr.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
10 eqid 2621 . . . 4 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
119, 10, 2matval 20211 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐴 = ((𝑅 freeLMod (𝑁 × 𝑁)) sSet ⟨(.r‘ndx), · ⟩))
1211fveq2d 6193 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (.r𝐴) = (.r‘((𝑅 freeLMod (𝑁 × 𝑁)) sSet ⟨(.r‘ndx), · ⟩)))
138, 12eqtr4d 2658 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → · = (.r𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1482  wcel 1989  Vcvv 3198  cop 4181  cotp 4183   × cxp 5110  cfv 5886  (class class class)co 6647  Fincfn 7952  ndxcnx 15848   sSet csts 15849  .rcmulr 15936   freeLMod cfrlm 20084   maMul cmmul 20183   Mat cmat 20207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-i2m1 10001  ax-1ne0 10002  ax-rrecex 10005  ax-cnre 10006
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-ot 4184  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-nn 11018  df-2 11076  df-3 11077  df-ndx 15854  df-slot 15855  df-sets 15858  df-mulr 15949  df-mat 20208
This theorem is referenced by:  matring  20243  matassa  20244  matmulcell  20245  mpt2matmul  20246  mat1  20247  mattposm  20259  mat1dimmul  20276  dmatmul  20297  mdetmul  20423  madurid  20444  slesolinv  20480  slesolinvbi  20481  cramerimplem3  20485  mat2pmatmul  20530  decpmatmullem  20570  decpmatmul  20571  matunitlindflem2  33386
  Copyright terms: Public domain W3C validator