MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matplusg2 Structured version   Visualization version   GIF version

Theorem matplusg2 21035
Description: Addition in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
matplusg2.a 𝐴 = (𝑁 Mat 𝑅)
matplusg2.b 𝐵 = (Base‘𝐴)
matplusg2.p = (+g𝐴)
matplusg2.q + = (+g𝑅)
Assertion
Ref Expression
matplusg2 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋f + 𝑌))

Proof of Theorem matplusg2
StepHypRef Expression
1 matplusg2.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
2 matplusg2.b . . . . . 6 𝐵 = (Base‘𝐴)
31, 2matrcl 21020 . . . . 5 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43adantr 483 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
5 eqid 2821 . . . . . 6 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
61, 5matplusg 21022 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g𝐴))
7 matplusg2.p . . . . 5 = (+g𝐴)
86, 7syl6eqr 2874 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = )
94, 8syl 17 . . 3 ((𝑋𝐵𝑌𝐵) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = )
109oveqd 7172 . 2 ((𝑋𝐵𝑌𝐵) → (𝑋(+g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋 𝑌))
11 eqid 2821 . . 3 (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))
124simprd 498 . . 3 ((𝑋𝐵𝑌𝐵) → 𝑅 ∈ V)
134simpld 497 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑁 ∈ Fin)
14 xpfi 8788 . . . 4 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
1513, 13, 14syl2anc 586 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑁 × 𝑁) ∈ Fin)
16 simpl 485 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑋𝐵)
171, 5matbas 21021 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
184, 17syl 17 . . . . 5 ((𝑋𝐵𝑌𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
1918, 2syl6eqr 2874 . . . 4 ((𝑋𝐵𝑌𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = 𝐵)
2016, 19eleqtrrd 2916 . . 3 ((𝑋𝐵𝑌𝐵) → 𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
21 simpr 487 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
2221, 19eleqtrrd 2916 . . 3 ((𝑋𝐵𝑌𝐵) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
23 matplusg2.q . . 3 + = (+g𝑅)
24 eqid 2821 . . 3 (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g‘(𝑅 freeLMod (𝑁 × 𝑁)))
255, 11, 12, 15, 20, 22, 23, 24frlmplusgval 20907 . 2 ((𝑋𝐵𝑌𝐵) → (𝑋(+g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋f + 𝑌))
2610, 25eqtr3d 2858 1 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋f + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3494   × cxp 5552  cfv 6354  (class class class)co 7155  f cof 7406  Fincfn 8508  Basecbs 16482  +gcplusg 16564   freeLMod cfrlm 20889   Mat cmat 21015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-ot 4575  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-fz 12892  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-hom 16588  df-cco 16589  df-prds 16720  df-pws 16722  df-sra 19943  df-rgmod 19944  df-dsmm 20875  df-frlm 20890  df-mat 21016
This theorem is referenced by:  matplusgcell  21041  matring  21051  mat2pmatghm  21337  pm2mpghm  21423
  Copyright terms: Public domain W3C validator