MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matplusgcell Structured version   Visualization version   GIF version

Theorem matplusgcell 20000
Description: Addition in the matrix ring is cell-wise. (Contributed by AV, 2-Aug-2019.)
Hypotheses
Ref Expression
matplusgcell.a 𝐴 = (𝑁 Mat 𝑅)
matplusgcell.b 𝐵 = (Base‘𝐴)
matplusgcell.p = (+g𝐴)
matplusgcell.q + = (+g𝑅)
Assertion
Ref Expression
matplusgcell (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽)))

Proof of Theorem matplusgcell
StepHypRef Expression
1 matplusgcell.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 matplusgcell.b . . . . 5 𝐵 = (Base‘𝐴)
3 matplusgcell.p . . . . 5 = (+g𝐴)
4 matplusgcell.q . . . . 5 + = (+g𝑅)
51, 2, 3, 4matplusg2 19994 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋𝑓 + 𝑌))
65oveqd 6544 . . 3 ((𝑋𝐵𝑌𝐵) → (𝐼(𝑋 𝑌)𝐽) = (𝐼(𝑋𝑓 + 𝑌)𝐽))
76adantr 479 . 2 (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 𝑌)𝐽) = (𝐼(𝑋𝑓 + 𝑌)𝐽))
8 df-ov 6530 . . 3 (𝐼(𝑋𝑓 + 𝑌)𝐽) = ((𝑋𝑓 + 𝑌)‘⟨𝐼, 𝐽⟩)
98a1i 11 . 2 (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋𝑓 + 𝑌)𝐽) = ((𝑋𝑓 + 𝑌)‘⟨𝐼, 𝐽⟩))
10 opelxp 5060 . . 3 (⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁) ↔ (𝐼𝑁𝐽𝑁))
11 eqid 2609 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
121, 11, 2matbas2i 19989 . . . . . 6 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
13 elmapfn 7743 . . . . . 6 (𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) → 𝑋 Fn (𝑁 × 𝑁))
1412, 13syl 17 . . . . 5 (𝑋𝐵𝑋 Fn (𝑁 × 𝑁))
1514adantr 479 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑋 Fn (𝑁 × 𝑁))
161, 11, 2matbas2i 19989 . . . . . 6 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
17 elmapfn 7743 . . . . . 6 (𝑌 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) → 𝑌 Fn (𝑁 × 𝑁))
1816, 17syl 17 . . . . 5 (𝑌𝐵𝑌 Fn (𝑁 × 𝑁))
1918adantl 480 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑌 Fn (𝑁 × 𝑁))
201, 2matrcl 19979 . . . . . 6 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
21 xpfi 8093 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
2221anidms 674 . . . . . . 7 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin)
2322adantr 479 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 × 𝑁) ∈ Fin)
2420, 23syl 17 . . . . 5 (𝑋𝐵 → (𝑁 × 𝑁) ∈ Fin)
2524adantr 479 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑁 × 𝑁) ∈ Fin)
26 inidm 3783 . . . 4 ((𝑁 × 𝑁) ∩ (𝑁 × 𝑁)) = (𝑁 × 𝑁)
27 df-ov 6530 . . . . . 6 (𝐼𝑋𝐽) = (𝑋‘⟨𝐼, 𝐽⟩)
2827eqcomi 2618 . . . . 5 (𝑋‘⟨𝐼, 𝐽⟩) = (𝐼𝑋𝐽)
2928a1i 11 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑋‘⟨𝐼, 𝐽⟩) = (𝐼𝑋𝐽))
30 df-ov 6530 . . . . . 6 (𝐼𝑌𝐽) = (𝑌‘⟨𝐼, 𝐽⟩)
3130eqcomi 2618 . . . . 5 (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽)
3231a1i 11 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → (𝑌‘⟨𝐼, 𝐽⟩) = (𝐼𝑌𝐽))
3315, 19, 25, 25, 26, 29, 32ofval 6781 . . 3 (((𝑋𝐵𝑌𝐵) ∧ ⟨𝐼, 𝐽⟩ ∈ (𝑁 × 𝑁)) → ((𝑋𝑓 + 𝑌)‘⟨𝐼, 𝐽⟩) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽)))
3410, 33sylan2br 491 . 2 (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑋𝑓 + 𝑌)‘⟨𝐼, 𝐽⟩) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽)))
357, 9, 343eqtrd 2647 1 (((𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 𝑌)𝐽) = ((𝐼𝑋𝐽) + (𝐼𝑌𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  Vcvv 3172  cop 4130   × cxp 5026   Fn wfn 5785  cfv 5790  (class class class)co 6527  𝑓 cof 6770  𝑚 cmap 7721  Fincfn 7818  Basecbs 15641  +gcplusg 15714   Mat cmat 19974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-ot 4133  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-sup 8208  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-fz 12153  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-hom 15739  df-cco 15740  df-0g 15871  df-prds 15877  df-pws 15879  df-sra 18939  df-rgmod 18940  df-dsmm 19837  df-frlm 19852  df-mat 19975
This theorem is referenced by:  mat1ghm  20050  cpmatacl  20282  mat2pmatghm  20296  pm2mpghm  20382
  Copyright terms: Public domain W3C validator